Newly-discovered young, nearby stars

Rabi S. Whitaker, Eric L.N. Jensen, Swarthmore College

For decades, astronomers have been studying the early stages of stellar evolution by observing large associations, such as Taurus-Auriga and Sco-Cen, that are known to be active star formation
regions. In recent years, however a number of young stars have been detected in isolated parts of regions. In recent years, however, a number of young stars have been detected in isolated parts of
the field, and at distances of only $50-100$ pc (e.g.,. Gregorio-Hetem et al. 1992; Mamajek et al. 1999; Zuckerman \& Webb 2000). These discoveries are interesting not only because we do not ye have a clear picture of star formation outside of large molecular clouds, but also because such stars are excellent candidates for studying disk evolution and planet formation. In contrast to stars in large associations, most of which lie at distances of 140 parsecs or more, these stars are near nough that we may be able to observe their circumstellar material in great detai
With this long-term goal in mind, we have undertaken a survey of the Southern sky to search for nearby pre-main-sequence stars. In the first phase of this project, we selected a number of Hipparcos Catalog and the ROSAT Bright Source Catalog; spectral type of G5 or later; and high fractional x-ray luminosity. Subsequent observations and measurements of lithium equivalent widths allowed us to determine which of these stars are actually young. Because lithium is destroyed as low-mass stars age (see Figure 4), it is an excellent indicator of youth. Low-mass stars
with significant lithium abundances are likely to be less than 50 Myr old (see Figure 1). We with significant lithium abundances are likely to be less than 50 Myr old (see Figure 1). We
detected 25 young stars in this previous survey, referred to below as Phase I . detected 25 young stars in this previous survey, referred to below as Phase I
Because stars tend to form in groups, there may be additional young stars in the same regions of pace as the young stars found in Phase 1 . Here we report on the first observing run of Phase II of ur survey, in which we looked for additional young stars near the Phase I target
We searched the Tycho-2 catalog, which is complete to fainter magnitudes than the Hipparcos Watag is, within a ten-degree-radius field around each previously-detected pre-main-sequence
tar to find targets that not only meet all the previous selection criteria but that also have proper motions similar to those we knew to be young. By doing this, we hoped to eliminate projection effects and select only those stars that are at similar distances to the stars we detected in Phase Stars in both phases of the survey were observed with the echelle spectrograph on the 4-meter Blanco telescope at CTIO on August 4-5, 2003.
Three young stars found in the first phase of our survey formed the basis for this initial Phase II run, in three different parts of the sky. HIP 86672 is projected outside the boundaries of the Uppe Sco and Upper Centaurus-Lupus subgroups of the Sco-Cen OB association; HIP 70351 about 7∞ (see Table 1). We discuss each of these regions in turn. We find 19 of 33 stars in our new
observations to be young (Figure 1)

Figure 1. Li equivalent widths for stars from our new observations (orange symbols), compared to those of stars in the $30-50$ Myr old clusters IC 2391 and IC 2602 (blue circles, data from Randich et al. 2001).
The blue line denotes the approximate empirical locus of the Li EW-Teff relation at the age of these
 stars ploted as filled orange circles lie on or above the locus of the cluster stars, and thus are likely to be $30-50$ Myr old or younger. Some stars in our observations do not show strong Li (orange X's) and are
presumably older, these stars are not discussed further here.

Stars near Upper Sco

As noted at left, we searched for stars within a $10 \propto$ ©radius of HIP 86672 . While HIP 86672 lies at a distance of only 72 pc , compared with 140-145 pc for Upper Sco (US) and Upper Centaurus-Lupus (UCL) (de Zeeuw et al. 1999), and the new stars found are projected $5 \propto 10 \propto$ beyond the canonical boundaries of US and UCL, we believe they are members of (or at least related to) these subgroups of Sco OB2 rather than composing a distinct group of
their own around HIP 86672. If we plot these stars on the HR diagram (blue symbols in Figure 5 at right) assuming a distance of 72 pc , many of them fall below the main sequence, indicating that the assumed distan too small. When we use a distance of 145 pc (which is what is shown in Figure 5), the stars' ages (with one exception) are found to be $10-30 \mathrm{Myr}$, consistent with their observed Li equivalent widths (Figure 1).
In addition, when we use this distance to calculate galactic space velocities U, V, and W for our newly-observed stars, we find that they are roughly consistent with the average space velocities for US and UCL. This evidence, combined with similarities in measured radial velocities (see Figure 3), makes a strong case for these stars' membership in Upper Sco or Upper Centaurus-Lupus, at distances between 100 and 145 pc. The ages of these stars are more consistent with UCL (mean age of $22+/-1$ Myr using the same evolutionary tracks, Mamajek et al
2002) than with US (mean age 5 Myr, de Geus et al. 1989, Walter et al. 1994) 2002) than with US (mean age 5 Myr, de Geus et al. 1989, Watter et al. 1994).

Nearly one-third of the young stars in our sample are spectroscopic binaries or triple-star systems (see Figure 2) This may be partly due to our use of x-ray brightness as a selection criterion, since short-period binaries are more
likely to be rapid rotators, producing stronger x-ray emission. It appears from our observations that the distribution of pre-m
If appene the canonical boundaries defined by previous observations.
beyond the canonical boundaries defined by previous observations.

Figure 2. Spectra in the region of the Li $6708 \AA$ line from five young stars near Upper Sco. Note
that three of the five are double--lined binaries as line from five young stars near Uper Sco. Note
that three of the five are double-lined binaries as well as being rapid rotators. A star in a binary system is more likely to have a high rotational
velocity and a correspondingly large x-ray velocity and a correspondingly large x-ray
luminosity than an equivalent star that is not part of a binary system. Thus our selection of star based on strong x -ray emission may explain why we found so many double- and triple-lined
binaries (6 out of 19 young stars).

 Upper Sco have radial velocities ranging from -1 to -9
$\mathrm{~km} / \mathrm{s}$ (Walter et al. 1994), peaked at $-5 \mathrm{~km} / \mathrm{k}$. of all the km / s (Walter et al. 1994), peaked at $-5 \mathrm{~km} / \mathrm{s}$. Of all the
stars that we observed in this region, all but three have stars that we observed in this region, all but three have measured radial velocities within this range, indicated by
the blue lines. The star with varaial $=43 \mathrm{~km} / \mathrm{sis}$ not
young: other outliers are stars in double-lined binary young; other outliers are stars ind double-lined binary
systems. For double-lined binaries, the average of the systems. For double-lined binaries, the average of the
component velocities from our observations is ploted, but the true center-of-mass velocity is unknown.

Stars near Chamaeleon

Observations with ROSAT and optical follow-up revealed the presence of a substantial population of pre-main sequence stars in the Chamaeleon region that are not associated with molecular gas (e.g., Feigelson et al. 1993, Alcalá et al. 1997). Our Phase I observations revealed an additional young star, HIP 70351 , about 7 onorthwest of
the Cha II cloud and outside the region surveyed in previous work. Our new follow the Cha II cloud and outside the region surveyed in previous work. Our new follow-up observations in a 10∞
radius field around HIP 70351 found one additional young star, TYC 9034968 1, which is proiected even farther radius field around HIP 70351 found one additional young star, TYC 9034968 1, which is projected even farther
from the Cha dark clouds. Assuming that TYC 90349681 lies at the same distance as HIP 70351,90 pc, we find from the Cha dark clouds. Assuming that TYC 90349681 lies at the same distance as HIP $70351,90 \mathrm{pc}$, we find the two stars to be coeval with an age of roughly 30 Myr (red symbols in Figure 5).
In addition, our proper-motion and x -ray selection criteria were met by TYC 94266821 , found by Covino et al.
(1997) to have a Li equivalent width of 195 mA , consistent with being a similar age as the other two stars, though (1997) to have a Li equivalent width of 195 mA , consistent with being a sis

We
We also note that Frink et al. (1998) argue for the existence of a group of stars near Chamaeleon with distinct kinematics (their subgroup 2) and a distance of about 90 pc , similar to the stars found in this work.

Results:

- Isolated 10-30 Myr-old stars at $50 \mathrm{pc}, b=-80 \infty$
- Young stars found outside canonical boundaries of Sco OB2 and Chamaeleon.

High-latitude isolated young stars

Perhaps the most interesting discovery in our Phase II survey to date is finding young stars at high Galactic latitude, far from any known region of star formation. HIP 5191 lies at 50 pc , and its Li line is somewhat weaker than some of the other stars in our survey, suggesting that it may be older than $30-50 \mathrm{Myr}$ (Figure 1). Searchhing for x -ray bright stars projected near it, however,
we found the M1 star TYC 58531318 1. This star has an extremely strong Li line, suggesting a young age. Figure 4 shows a comparison between TYC 58531318 1, GJ 846 (an older mainsequence star), and GJ 803 (AU Mic), a co-moving companion of Pictoris. Note the extremely strong Li line in TYC 58531318 1, and the weaker but still present Li line in GJ 803. GJ 803 has been suggested to be part of an association with Pic that has an age of 12-20 Myr (Zuckerman et al. 2001). The much stronger Li line in TYC 585313181 suggests that it is even younger tha GJ 803. Assuming that it lies at the same d
diagram gives an age of 10 Myr (Figure 5).

The Galactic space motion of TYC $585313181,(U, V, W)=(-7.8,-14.5,-7.3) \mathrm{km} / \mathrm{s}$ assumin a distance of 50 pc , is similar to that of the Pic group suggested by Zuckerman et al. (2001). despite lying near each other in the sky, these stars may not be part of a common group.
We found one other Li-rich star in this region, TYC 5850274 1, but its kinematics are quite different from those of the other two stars, especially in W, with $(U, V, W)=(-2.8,-3.0,9.8) \mathrm{km} / \mathrm{s}$. In addition, its position on the HR diagram (Figure 5, green triangle below the main sequence) indicates that it lies at a significantly greater distance than the 50 pc assumed here.

Thus, these high-latitude young stars do not appear to have a common origin.

Figure 4. Spectra in the region of
the Li 6708 Â feature for three early the Li $6708 \AA$ feature for three early
M stars. The spectra all have SN\rangle 100, so every feature seen here is real. Note that GJ 803 (a comoving companion of Pic) does
have a detected Li line, though it is have a detected Li line, though it is
much weaker than that of TYC 5853 1318 1, a newly-discovered young star at a Galactic latitude of $b=$
$-85 \propto$

Figure 5 . HR diagram of the young stars
detected in this work, using the equence evolutionary track of Siess et al. 2001). Distances for many of these stars are unknown, so we have assumed 145 pc for the
stars near Sco OB 2 (blue symbols), 90 pc for the stars near Chamaeleon (red syybols), and
50 pe for the stars at high Galactic latitude 50 pc for the stars at high Galactic latitude
greeen symbols). For a few stars these distances are clearly incorrect, but for a
maiority they yield ages of $10-30$ Myr, majority they yield ages of $10-30 \mathrm{Myr}$,
consistent with their strong x-ray emission and
 observations of TYC 585313181 and TYC
58502741 (two of the high-atatude young 58502741 (two of the high-la

Acknowledgments

We gratefully acknowledge the support of the National Science Foundation through grant AST Koerner (Northern Arizona University) and Peter Allen (University of Pennsylvania) for their Korner (Northern Arizona University) and Peter Allen (University of Pennsylvania) for their

