X-ray Spectroscopy of Massive Star Winds: Shocks, Mass-Loss Rates, and Clumping

David Cohen Department of Physics & Astronomy Swarthmore College

Maurice Leutenegger (GSFC), Jon Sundqvist (Madrid), Stan Owocki (Delaware), Véronique Petit (Florida Institute of Technology), Marc Gagné (West Chester), Asif ud-Doula (Penn St.)

with Zack Li (Swarthmore '16), James MacArthur (Swarthmore '11), Emma Wollman (Swarthmore '09), Erin Martell (Swarthmore '09)

Outline

Chandra resolved X-ray line profile spectroscopy of O star winds

I.Resolved X-ray line profiles can provide diagnostically useful information about:

- A. plasma kinematics
- B. local absorption
- 2. Applications to massive star X-rays
 - A. wind-shock physics
 - B. wind absorption: wind mass-loss rate
 - C. with H-alpha: wind clumping

Prior to 2000: only low-resolution X-ray data zeta Pup (O4 If) : runaway, single O supergiant

ROSAT (early 1990s): resolving power, $R \sim 3$

overall X-ray luminosity; crude, modeldependent plasma temperature information

BBXRT (early 1990s): resolving power, $R \sim 10$

Corcoran et al. (1993)

Chandra and XXM-Newton launched ~2000

ROSAT (early 1990s): resolving power, $R \sim 3$

Hillier et al. (1993)

BBXRT (early 1990s): resolving power, $R \sim 10$

Corcoran et al. (1993)

Chandra MEG: resolving power, R up to 1000

Cassinelli et al. (2001)

XMM RGS: resolving power, R ~ few 100

Kahn et al. (2001)

O star X-ray spectra have broad lines

63 ks HETGS zeta Pup (O4 If)

 $\frac{V_{wind} \sim 10^{3} \text{ km/s}}{V_{resolution} \sim 10^{2} \text{ km/s}}$ $\frac{V_{therm} \sim 10^{1} \text{ km/s}}{V_{therm} \sim 10^{1} \text{ km/s}}$

Chandra resolution

O star X-ray spectra have broad lines

Doppler, v/c = $\Delta\lambda/\lambda$ resolving power, $R = \lambda/\Delta\lambda$ Vwind ~ 10^3 km/s Vresolution ~ 10^2 km/s Vtherm ~ 10^1 km/s

Chandra resolution

X-ray emission lines are well resolved

Typical O star line profile; here Fe XVII

Chandra resolution

dominated by Doppler broadening due to bulk motion of the emitting plasma

Asymmetric line shape due to continuum absorption by the cool wind component

Rich diagnostics provided by HRXS

shock physics: hot plasma kinematics and spatial distribution and wind mass-loss rates and clumping properties

Chandra resolution

63 ks HETGS zeta Pup (O4 If)

Soft-X-ray emission is ubiquitous in O stars $L_X \sim 10^{-7} L_{Bol} (L_X \sim 10^{31} \text{ to } 10^{33} \text{ ergs s}^{-1})$

soft thermal spectrum: kT < I keV

High- and low-mass stars have different X-ray production mechanisms

Massive stars show no correlation between rotation and X-ray emission No convective envelope; no dynamo; no corona

low mass

Lx=1027 (Vsin i)2

RS CVn's

Empty circles: Sp GO-M5

Filled circles: Sp F7-F8

2

vsini

LOG V sin i (km s⁻¹)

0 IV+V

0 111 + 11

vsini

High- and low-mass stars have different X-ray production mechanisms Massive stars produce X-rays via shock-heating of their winds

vsini

vsini

OB star winds are (line) radiation driven & though they're very dense, they are *not* best seen via imaging

Radiation-driven O star winds

 ζ Pup (O4 supergiant): $\dot{M} \sim \text{few } 10^{-6} \text{ M}_{\text{sun}}/\text{yr}$

UV spectrum: C IV 1548, 1551 Å

Velocity (km/s)

Radiation-driven O star winds

variability in wind UV lines

Embedded Wind Shock (EWS) paradigm Line Deshadowing Instability (LDI) - intrinsic to line-driven flows

numerous shocks distributed throughout the wind, generally above some onset radius

I-D radiation-hydro simulation

I-D rad-hydro simulation

with J. Sundqvist, S. Owocki, Z. Li

movie available at http://astro.swarthmore.edu/~cohen/presentations/movies/ifrc3_abbott0.65_xkovbc350._xmbko1.e-2_epsabs-1.e-20.gif

Physics of the Line Deshadowing Instability (LDI) Milne (1926) radiation force depends on changes in the local wind velocity (moving out of the Doppler shadow)

stability analysis: Owocki, Castor, Rybicki (1984,1988)

overlap between line profile and local radiation field

Embedded Wind Shock (EWS) paradigm Less than 1% of the mass of the wind is emitting X-rays >99% of the wind is cold and X-ray absorbing

Open theoretical issues

clump-clump collisions vs. self-excited instability

Feldmeier, Puls, & Pauldrach (1997)

Lower boundary conditions

photospheric perturbations + limb darkening

self-excited

1842 J. O. Sundqvist and S. P. Owocki

Figure 4. Inner wind time evolutions of a simulation without limb darkening and photospheric perturbations (left) and one including both effects (right).

Sundqvist & Owocki (2013)

2-D radiation-hydro simulations initial work; line transport is expensive

Simulations constrained by data?

In addition to explaining the overall X-ray emission levels, the LDI physics generating embedded wind shocks makes predictions that can be tested by high-resolution X-ray spectroscopy:

Spatial distribution of X-ray emitting plasma Kinematics

Degree of absorption by the wind in which it's embedded

...clumping

Chandra grating spectra confirmed the EWS scenario

Chandra easily resolves the wind-broadened X-ray emission lines

lines are asymmetric: this is a signature of wind absorption, and enables us to measure the wind massloss rate

to fit data

that captures the physics of the EWS/LDI

► Contraction of the symmetry of the symmetry

Line Asymmetry

Line Asymmetry

Line Asymmetry

absorption along the ray

.................

2 representative points in the wind that emit X-rays

extra absorption for redshifted photons from the rear hemisphere

Wind Profile Model

Line profile shapes

key parameters: $R_o \& T_\star$

$$v = v_{\infty} (I - r/R_{\star})^{\beta}$$

$$j \sim \rho^2$$
 for $r/R_* > R_o$,

= 0 otherwise

$$\tau = \tau_* \int_{z}^{\infty} \frac{R_* dz'}{r'^2 (1 - \frac{R_*}{r'})^{\beta}}$$

Owocki & Cohen 2001

custom model in XSPEC (windprofile)

Fit the model to data

ζ Pup: Chandra

Spatial distribution and kinematics of shocked wind plasma

Look at all unblended lines in the Chandra HETGS spectrum of ζ Pup

Distribution of R_o values for ζ Pup

v_{∞} can be constrained by the line fitting too

X-ray plasma and mean wind have same kinematics

Absorption signatures in the X-ray line profiles

Fit the model to data

ζ Pup: Chandra

Quantifying the wind optical depth opacity of the cold wind wind mass-loss rate component (due to photoionization of C, N, O, Ne, Fe) $M = 4\pi r^2 v \rho$ кМ ${\mathcal T}_*$ $4\pi R_*v$ wind terminal stellar radius velocity

soft X-ray wind opacity

note: absorption arises in the dominant, cool wind component

ζ Pup Chandra: three emission lines

Mg Lyα: 8.42 Å

Ne Lyα: 12.13 Å

Ο Lyα: 18.97 Å

Τ∗ ~ Ι

T_{*} ~ 2

Recall:

$$\tau_* \equiv \frac{\kappa \dot{M}}{4\pi R_* v_\infty}$$

Results from the 3 line fits shown previously

Fits to 16 lines in the Chandra spectrum of ζ Pup

Fits to 16 lines in the Chandra spectrum of ζ Pup

Fits to 16 lines in the Chandra spectrum of ζ Pup

${}^{\bullet}$ becomes the free parameter of the fit to the T_{*}(λ) trend

${}^{\bullet}$ becomes the free parameter of the fit to the T_{*}(λ) trend

X-ray line profile based mass-loss rate: implications for clumping

basic definition: $f_{cl} \equiv \langle \rho^2 \rangle / \langle \rho \rangle^2$ $f^{=} \langle \rho^2 \rangle^{0.5} / \langle \rho \rangle$

clumping factor

optical: $F_{H\alpha} \sim f_{cl}\rho^2 \sim f_{cl}\dot{M}^2$ $(f_{cl})^{0.5}\dot{M}$ is the invariant for $H\alpha$ ignoring clumping will cause you to overestimate the mass-loss rate...for density-squared diagnostics

X-ray combined with $H\alpha$

optical:
$$F_{H\alpha} \sim f_{cl}\rho^2 \sim f_{cl}\dot{M}^2$$

X-ray: $T_{\star} \sim \rho \sim \dot{M}$

$(f_{cl})^{0.5}$ M is the invariant for H α

optical H α : $(f_{cl})^{0.5}$ $\mathring{M} = 8.3 \times 10^{-6}$ for ζ Pup X-ray: $\mathring{M} = 1.8 \times 10^{-6}$ for ζ Pup (this work)

 $f_{cl} \sim 20$ for ζ Pup

but see Puls et al. 2006, Najarro et al. 2011: radial variation of clumping factor

clumping factor ~10 to ~20 (Najarro et al. 2011)

Fig. 18. Radial stratification of the clumping factor, f_{cl} , for ζ Pup. Black solid: clumping law derived from our model fits. Red solid: Theoretical predictions by Runacres & Owocki (2002) from hydrodynamical models, with self-excited line driven instability. Dashed: Average clumping factors derived by Puls et al. (2006) assuming an outer wind matching the theoretical predictions. Magenta solid: run of the velocity field in units of 100 km s⁻¹. See also Sect. 4.

2-D radiation-hydro simulations clumps break up to the grid scale; $f_{cl} \sim 10$

Dessart & Owocki 2003

HD 93129A (O2 If*)

Tr 14: Chandra

Carina: ESO

Strong stellar wind: traditional diagnostics UV no clumping a

no clumping assumed $\dot{M} = 2 \times 10^{-5} M_{sun}/yr$ $v_{\infty} = 3200 \text{ km/s}$

Ηα

Fig. 13. Observed H α profile (solid) compared with the calculation assuming a mass loss of $18 \times 10^{-6} M_{\odot}$ /yr (dashed). Note that the blue narrow emission peak originates from the H II-region emission.

Chandra MEG spectrum of HD 93129A

Cohen et al., 2011, MNRAS, 415, 3354

d = 2.2 kpc vs. 0.4 kpc for ζ Pup

HD 93129A

Mg XII Lyman-alpha

R_o = onset radius of X-ray emission

T* from five emission lines

 $\dot{M} = 7 \times 10^{-6} M_{sun}/yr$

Extension of X-ray profile mass-loss rate diagnostic to other stars lower mass-loss rates than theory predicts

with clumping factors typically of ~ 20

Conclusions

0. HRXS provides useful diagnostic information about hot plasma physics and also can probe surrounding material via absorption

I. X-ray onset at $R_o \sim 1.5 R_{\star}$

2. Mass-loss rates are lowered by roughly a factor of three

3. Clumping factors of order 10 are consistent with optical and X-ray diagnostics

4. Clumping starts at the base of the wind, lower than the onset of X-ray emission

