X-ray Emission from the Winds of Massive Stars

David Cohen Department of Physics & Astronomy Swarthmore College

Véronique Petit (Florida Tech), Maurice Leutenegger (GSFC), Stan Owocki & Dylan Kee (Delaware), Jon Sundqvist (Madrid), Marc Gagné (West Chester), Asif ud-Doula (Penn St.Worthington-Scranton) with

Emma Wollman (Caltech, Swarthmore '09), James MacArthur (Stanford, Swarthmore '11), Jake Neely (Swarthmore '13), Zack Li (Swarthmore '16), Jackie Pezzato (Swarthmore '17)

massive stars are usually hot & therefore blue

Orion Nebula, Hubble Space Telescope

"O-type star" is the hottest stellar spectral classification

θ^{I} Ori C: only O star here

Basic properties of O stars

mass ~ 50 M_{sun} luminosity ~ 10⁶ L_{sun} surface temperature ~ 45,000 K

Basic properties of O stars

mass ~ 50 M_{sun} luminosity ~ 10⁶ L_{sun} surface temperature ~ 45,000 K

Sun and full Moon - factor of a million (10⁶) in brightness

Blackbody spectra

above T ~ 10,000 K most of a star's emission is in the UV

O stars are even more extreme:T > 30,000 K

even so, **no X-ray** emission from the photospheres (surfaces) of even the hottest stars

Basic properties of O stars

mass ~ 50 M_{sun} significant momentum inluminosity ~ 10^6 L_{sun} the photosphericsurface temperature ~ 45,000 Kradiation field

Strong, *radiation-driven* stellar winds are a characteristic of massive stars

NGC 6888 Crescent Nebula - Tony Hallas

O star - source of wind bubble: ~I arc second instrumental resolution; star's angular size is 10⁴ times smaller

NGC 6888 Crescent Nebula - Tony Hallas

small spatial scales can be studied using spectroscopy

Velocity (km/s)

Ultraviolet spectrum showing wind feature from C^{+3}

 ζ Pup (O4 supergiant): $\dot{M} \sim \text{few } 10^{-6} \text{ M}_{\text{sun}}/\text{yr}$

UV spectrum: C IV 1548, 1551 Å

Velocity (km/s)

Spectral lines:

absorption line when translucent gas is between you and a hotter, opaque source of continuum photons

emission line when hot gas is seen against a cold background

absorption and emission: atomic energy level diagrams

Ultraviolet spectrum showing wind feature from C^{+3}

 ζ Pup (O4 supergiant): $\dot{M} \sim \text{few } 10^{-6} \text{ M}_{\text{sun}}/\text{yr}$

UV spectrum: C IV 1548, 1551 Å

Velocity (km/s)

Radiation Force on in atom

Radiation driving of massive star winds

$\dot{M} \sim 10^{-6} M_{sun}/yr$ (10⁸ times the Sun's value) kinetic power in the wind = 1/2 $\dot{M}v_{\infty}^2$ (~10⁻³ L_{bol})

Radiation driving of massive star winds

$\dot{M} \sim 10^{-6} M_{sun}/yr$ (10⁸ times the Sun's value)

kinetic power in the wind = $1/2 \text{ Mv}_{\infty}^2$ (~10⁻³ L_{bol})

Carina Nebula

massive, luminous stars drive the physics winds, eruptive mass loss, and supernovae all contribute

~1000 year-old core-collapse supernova remnant

Crab Nebula, WIYN

Scale nearest massive stars are ~1000 parsecs* away

Whirlpool Galaxy, Hubble Space Telescope

Massive stars as drivers of Galactic physics

Tarantula, HST

Key points so far:

Massive stars have strong winds

Spectroscopy allows us to study structures that we can't see in images

Next: Stellar X-ray emission

The Sun - and other cool, low-mass stars - emit X-rays

NASA:TRACE

The Sun's X-ray emission is associated with its magnetic dynamo (rotation + convection are key ingredients)

rotation

starfish, *in situ*, at the Monterey, California Aquarium (photo: D. Cohen)

starfish, in situ, at the Monterey, California Aquarium (photo: D. Cohen)

discovery of massive star X-ray emission in 1970s

THE ASTROPHYSICAL JOURNAL, 234:L51-54, 1979 November 15 © 1979. The American Astronomical Society. All rights reserved. Printed in U.S.A.

DISCOVERY OF AN X-RAY STAR ASSOCIATION IN VI CYGNI (CYG OB2)

F. R. HARNDEN, JR., G. BRANDUARDI, M. ELVIS,¹ P. GORENSTEIN, J. GRINDLAY, J. P. PYE,¹ R. ROSNER, K. TOPKA, AND G. S. VAIANA² Harvard-Smithsonian Center for Astrophysics, Cambridge, Massachusetts Received 1979 June 26; accepted 1979 July 26

ABSTRACT

A group of six X-ray sources located within 0°.4 of Cygnus X-3 has been discovered with the *Einstein* Observatory. These sources have been positively identified and five of them correspond to stars in the heavily obscured OB association VI Cygni. The optical counterparts include four of the most luminous O stars within the field of view and a B5 supergiant. These sources are found to have typical X-ray luminosities L_x (0.2-4.0 keV) $\sim 5 \times 10^{33}$ ergs s⁻¹, with temperatures $T \sim 10^{6.8}$ K and hydrogen column densities $N_{\rm H} \sim 10^{22}$ cm⁻², and therefore comprise a new class of low-luminosity galactic X-ray sources associated with early-type stars.

Massive stars have some *different* X-ray production mechanism

Maybe due to their powerful winds?

No observed correlation between rotation and X-ray luminosity

0 IV + V 33 0 Empty symbols: Sp 03-B5 Filled symbols: So B8-A5 ÷ 31 Algoi 6.9 30 5 8 z9 28 27 26 Ô LOG V sin / (km s

ASTRONOMY AND ASTROPHYSICS

X-ray properties of bright OB-type stars detected in the **ROSAT** all-sky survey

T.W. Berghöfer^{1,2*}, J.H.M.M. Schmitt¹, R. Danner^{1,3}, and J.P. Cassinelli⁴

¹ Max-Planck-Institut für Extraterrestrische Physik, Giessenbachstr, 1, D-85740 Garching, Germany

² Center for EUV Astrophysics, 2150 Kittredge Street, University of California, Berkeley, CA 94720, USA

³ Division of Physics, Mathematics, and Astronomy, Caltech 105-24, Pasadena, CA 91125, USA

⁴ University of Wisconsin - Madison, Department of Astronomy, 475 North Charter Street, Madison, WI 53706-1582, USA

Received 17 July 1996 / Accepted 26 November 1996

Abstract. The ROSAT all-sky survey has been used to study the X-ray properties for all OB-type stars listed in the Yale Bright Star Catalogue. Here we present a detailed astrophysical discussion of our analysis of the X-ray properties of our complete sample of OB-type stars; a compilation of the X-ray data is provided in an accompanying paper (Berghöfer, Schmitt & Cassinelli 1996).

We demonstrate that the "canonical" relation between X-ray and total luminosity of $L_x/L_{Bol} \approx 10^{-7}$ valid for O-type stars extends among the early B-type stars down to a spectral type B1–B1.5; for stars of luminosity classes I and II the spectral type B1 defines a dividing line for early-type star X-ray emission. 1979, Pallavicini *et al.* 1981, Chlebowski *et al.* 1989, Sciortino *et al.* 1990). However, the scatter for values of individual stars, 2 orders of magnitude, around the mean value is quite large. The widely accepted model for the X-ray emission from O stars assumes that it is produced by shock-heated gas propagating in the strong winds of these stars. In a phenomenological model Lucy & White (1980) and Lucy (1982) postulate the existence of shocks in the radiation driven winds of hot stars which are formed as a consequence of a strong hydrodynamic instability (e.g., Lucy & Solomon 1980). Hydrodynamical calculations for hot star winds (e.g., Owocki, Castor & Rybicki 1988) provide strong support for such a model. The base corona source of X-

Fig. 4. X-ray luminosities L_x plotted versus bolometric luminosities L_{Bol} ; solid lines represent regression lines for $L_{Bol} < 10^{38} erg \, s^{-1}$ and $L_{Bol} > 10^{38} erg \, s^{-1}$, whereas the dashed line shows $L_x = 10^{-7} \times L_{Bol}$, grey bars at the left side show typical ranges for the X-ray luminosity of Algol-type systems, pre-main sequence stars (PMS), and our Sun.

The wind kinetic power is typically 10^4 times larger than the observed L_x

some process - which doesn't have to be very efficient - converts a small fraction of this kinetic power to heat

the observed X-rays are the thermal radiation from this hot stellar wind plasma The line-deshadowing instability (LDI)

causes fast, rarefied wind plasma to slam into slower, denser wind plasma

the resulting shocks heat the plasma

the X-rays we see are the thermal emission from this hot wind plasma

general result from shock theory:

 $T \sim 10^6 (\Delta v_{shock}/300 \text{ km/s})^2$
X-ray emitting plasma is embedded in the wind intrinsic instability of radiative driving, Line Deshadowing Instability (LDI), leads to shock-heating of the wind

astro.swarthmore.edu/~cohen/presentations/ifrc3_xmbko1.e-2.gif

snapshot from the hydro simulation

X-ray emission lines should be **Doppler broadened**

Less than 1% of the mass of the wind is emitting X-rays

Key points so far:

Massive stars emit X-rays

Their radiation-driven winds are the site of the Xray emission (according to theory)

Next: X-ray spectroscopy of massive stars

X-ray spectroscopy confirms the general scenario embedded wind shocks (EWS)

X-RAY OBSERVATORY

Chandra launched in 1999 first high-resolution X-ray spectrograph

> response to photons with hv ~ 0.5 keV up to a few keV (corresp. ~5Å to 24Å)

X-ray imaging? > 0.5 arc sec, at best (100s of AU) spectroscopy ($\lambda/\Delta\lambda$ < 1000 corresp. v > 300 km/s)

Spectral resolution and velocity

"spectral resolution" how close can two lines be in a spectrum and still be seen as two separate lines?

"spectral resolution" how broad does an intrinsically narrow spectral line looks in the spectrograph?

spectral resolution, R = $\lambda/\Delta\lambda$

Doppler shift, $\Delta\lambda/\lambda = v/c$

now for some X-ray data... the same star (tau Sco) observed with three different X-ray telescopes ROSAT 1991 ASCA 1994

Chandra 2001

X-ray emission process thermal emission from collisional plasma

Chandra grating spectroscopy

ζ Pup (O4 If)

Chandra grating (HETGS/MEG) spectra

typical temperatures $T \sim \text{few } 10^6 \text{ K}$ (late-type stellar coronae tend to be hotter) ζPup (O4 If)

Zoom in

Zoom in

A careful look at the individual emission lines

characteristic asymmetry

blue-shifted peak & skewness

A careful look at the individual emission lines

characteristic asymmetry

How can this be explained in the context of embedded wind shocks (EWS)?

We need a model that...

captures the basic physical properties of the hydro simulations of the LDI

but is simple enough to parameterize and fit to data

Recall that most of the wind is cold

>99% of the wind is cold and X-ray absorbing

↑E

Line Asymmetry

Line Asymmetry

Line Asymmetry

2 representative points in the wind that emit X-rays

extra absorption for redshifted photons from the rear hemisphere

absorption along the ray

.................

Wind Profile Model

Line profile shapes

key parameters: $R_o \& T_\star$

$$v = v_{\infty} (I - r/R_{\star})^{\beta}$$

$$j \sim \rho^2$$
 for $r/R_* > R_o$,

= 0 otherwise

$$\tau = \tau_* \int_{z}^{\infty} \frac{R_* dz'}{r'^2 (1 - \frac{R_*}{r'})^{\beta}}$$

$$\tau_* \equiv \frac{\kappa M}{4\pi R_* v_\infty}$$

Model is fit to data

ζ Pup: Chandra

Hot plasma kinematics and location

 R_o controls the line width via v(r)

$$R_o = 3 R_{\star}$$

-10

 $R_o = 10 R_{\star}$

τ₊₌1

τ.=2

τ.=8

Distribution of R_o values for ζ Pup

v_{∞} can be constrained by the line fitting too

X-ray plasma and mean wind have same kinematics

The profiles also tell us about the level of wind absorption

Wind Profile Model

Model is fit to data

ζ Pup: Chandra

Quantifying the wind optical depth

opacity of the cold wind component (due to bound-free transitions in C, N, O, Ne, Fe)

wind mass-loss rate

 $\dot{M} = 4\pi r^2 v \rho$

 \mathcal{T}_*

κМ

 $4\pi R_*v$

wind terminal velocity

soft X-ray wind opacity

CNO processed

ζ Pup Chandra: three emission lines

Mg Lyα: 8.42 Å

Ne Lyα: 12.13 Å

Ο Lyα: 18.97 Å

Τ∗ ~ Ι

T_{*} ~ 2

Recall:

$$\tau_* \equiv \frac{\kappa \dot{M}}{4\pi R_* v_\infty}$$

Results from the 3 line fits shown previously

Fits to 16 lines in the Chandra spectrum of ζ Pup

Fits to 16 lines in the Chandra spectrum of ζ Pup

Fits to 16 lines in the Chandra spectrum of ζ Pup

soft X-ray wind opacity

CNO processed

Å becomes the free parameter of the fit to the $T_*(\lambda)$ trend

 ${}^{\bullet}$ becomes the free parameter of the fit to the T_{*}(λ) trend

Preliminary Conclusions

I. Doppler-broadened line profiles tell us the kinematics of the shock-heated wind plasma

2. Line profile asymmetry tells us about the wind absorption; joint analysis of an ensemble of lines tells us the mass-loss rate of the wind

Preliminary Conclusions

I. Doppler-broadened line profiles tell us the kinematics of the shock-heated wind plasma

consistent with hydro simulation predictions

2. Line profile asymmetry tells us about the wind absorption; joint analysis of an ensemble of lines tells us the mass-loss rate of the wind

mass-loss rate factor ~3 lower than theoretically expected value

Survey of a dozen O stars

Recall the O star that ionizes the Orion Nebula

θ^{I} Ori C: only O star here

Chandra X-ray image of the Orion Nebula Cluster θ¹ Ori C: very X-ray bright

~10% of massive stars are magnetic!

unlike solar type magnetism, though: time-constant, not dynamo generated, often large-scale dipole

A simulation of the circumstellar matter distribution of σ Ori E, as predicted by the Rigidly Rotating Magnetosphere mode

θ^{I} Ori C: prototype magnetic O star

temperature

emission measure

simulations by A. ud-Doula; Gagné et al. (2005)

The line-deshadowing instability (LDI)

causes fast, rarefied wind plasma to slam into slower, denser wind plasma

the resulting shocks heat the plasma

the X-rays we see are the thermal emission from this hot wind plasma

general result from shock theory:

 $T \sim 10^6 (\Delta v_{shock}/300 \text{ km/s})^2$

Magnetically Channeled Wind Shock model

magnetic channeling causes wind flows from opposite hemispheres to collide in the magnetic equator

the resulting shocks heat the plasma

the X-rays we see are the thermal emission from this hot wind plasma

general result from shock theory:

 $T \sim 10^6 (\Delta v_{shock}/300 \text{ km/s})^2$

θ^{I} Ori C: prototype magnetic O star

temperature

simulations by A. ud-Doula; Gagné et al. (2005)

magnetic channeling : strong shocks = hotter plasma

magnetic confinement : low post-shock velocity = narrower lines

θ^{I} Ori C: hotter plasma, narrower lines Mg XII / Mg XI is proportional to temperature

recently discovered largest O star magnetosphere (team includes Prof.V. Petit)

Preliminary Conclusions

I. Magnetic massive stars produce X-rays via wind shocks in their magnetospheres

2. X-ray observations show that this process is more efficient than LDI-generated embedded wind shocks in non-magnetic O stars

Overall Conclusions

I. Shock heating extracts kinetic energy from radiation-driven winds, producing the X-rays

2. X-ray spectroscopy provides diagnostic information about plasma temperatures, velocities, and absorption

Extra Slides

f/i ratios for diagnosing location of the hot plasma

Helium-like ions (e.g. O⁺⁶, Ne⁺⁸, Mg⁺¹⁰, Si⁺¹², S⁺¹⁴) – schematic energy level diagram

The **f**/*i* ratio is thus a diagnostic of the strength of the local UV radiation field.

If you know the UV intensity emitted from the star's surface, it thus becomes a diagnostic of the distance that the x-ray emitting plasma is from the star's surface.

θ^{I} Ori C: prototype magnetic O star

A. ud-Doula

θ^I Ori C: prototype magnetic O star

MDH simulations are only marginally consistent with *f/i* constraints

data say hot plasma is closer to the photosphere

A. ud-Doula

What produces the hot, X-ray emitting plasma in massive stars?

plasma with $T > 10^6$ K radiates X-rays (hv > 100 eV)

shocks heat plasma to $T \sim 10^6$ K if $\Delta V_{shock} \sim 300$ km/s and T $\sim (\Delta V_{shock})^2$

shocks are *radiative* in dense O star winds, but *adiabatic* in lower-density early B star winds

β Cru (B0.5 III)

Fe XVII line in the Chandra grating spectrum of β Cru (B0.5 III)

X-ray filling factors of B stars

B star winds have low density, shocks are adiabatic

once the wind is shocked (at ~ 1.5 R_{*}) it essentially *never* cools \Rightarrow outer wind is (nearly completely) filled with hot (few 10⁶ K) plasma that is no longer radiatively driven

hence, narrow-ish X-ray lines