X-ray Emission from O Stars

David Cohen Swarthmore College

Young OB stars are very X-ray bright

 L_x up to ~10³⁴ ergs s⁻¹

X-ray temperatures: few up to 10+ keV (**10s to 100+ million K**)

Orion; Chandra (Feigelson et al. 2002)

Outline – focus on single O stars

- 1. Young OB stars produce strong hard X-rays in their magnetically channeled winds
- After ~1 Myr X-ray emission is weaker and softer: embedded wind shocks in early O supergiants
- 3. X-ray line profiles provide evidence of low mass-loss rates
- 4. Wind-wind binaries will not be discussed

Orion Nebula Cluster: age ~ 1Myr; d ~ 450pc

~7*

Chandra ~10⁶ seconds, sub-arcsec resolution

Color coding of x-ray energy: <1keV, 1keV < E < 2.5keV, >2.5keV

Brightest X-ray sources are OB stars

θ¹ Ori C (07 V)

Chandra grating spectra ($R \sim 1000 \sim 300$ km s⁻¹)

 θ^1 Ori C: hotter plasma, narrower emission lines

 ζ Pup (O4 I): cooler plasma, broad emission lines

H-like/He-like ratio is temperature sensitive

The young O star – θ^1 Ori C – is hotter

Differential emission measure

(temperature distribution)

 θ^1 Ori C:

peak near 30 million K

evolved O stars, peak at a few million K Dipole magnetic field (> 1 kG) measured on θ^1 Ori C

Wade et al. (2006)

Magnetic field obliquity, $\beta \sim 45^{\circ}$

MHD simulations of magnetically channeled wind

temperature

emission measure

simulations by A. ud-Doula; Gagné et al. (2005)

Channeled collision is close to head-on – at 1000+ km s⁻¹ : $T = 10^7$ + K

Emission measure

contour encloses $T > 10^6 K$

MHD simulations show multi-10⁶ K plasma, moving slowly, ~1R_{*} above photosphere

contour encloses T > 10^{6} K

Differential emission measure

(temperature distribution)

MHD simulation of θ^1 Ori C reproduces the observed differential emission measure

1000 km s⁻¹

Young O stars have only modestly broad (few 100 km s⁻¹) X-ray emission lines

But **mature** O stars have broad (> 1000 km s⁻¹), asymmetric emission lines

A different mechanism is responsible

1-D rad-hydro simulation of an O star wind

Radiation line driving is inherently unstable: shock-heating and X-ray emission

continuum absorption in the bulk wind preferentially absorbs red shifted photons from the far side of the wind

The basic wind-profile model

key parameters: $R_o \& \tau_*$

$$j \sim \rho^2$$
 for $r/R_* > R_o$,
= 0 otherwise

$$au = au_* \int_{z}^{\infty} \frac{R_* dz'}{r'^2 (1 - \frac{R_*}{r'})^{eta}}$$

$$\tau_* \equiv \frac{\kappa M}{4 \pi R_* v_\infty}$$

Onset of instability-induced shock structure: $R_o \sim 1.5$

Wind optical depth constrains mass-loss rate

for $\tau_* = 2$

$$\tau_* \equiv \frac{\kappa \dot{M}}{4 \pi R_* v_\infty}$$

$$\tau_* = \frac{3.6\kappa_{150} M_{-6}}{R_{12}v_{2000}}$$
$$\dot{M}_{-6} = \frac{\tau_* R_{12}v_{2000}}{3.6\kappa_{150}}$$

 $1.5 X 10^{-6} M_{sun}/yr$

A factor of 4 reduction in mass-loss rate over the literature value of 6 X 10⁻⁶ M_{sun}/yr

ζ Pup: Fe XVII line at 15.014 Å - again

best-fit model, with $\tau_* = 2$, is preferred over the $\tau_* = 8$ model with >99.999% confidence

The **porosity** associated with a distribution of optically thick clumps acts to reduce the effective opacity of the wind

Owocki & Cohen (2006)

The key parameter is the **porosity length**, $h = (L^3/\ell^2) = \ell/f$

Porosity reduces the effective wind optical depth once *h* becomes comparable to *r*/R_{*}

$h = (L^3/\ell^2) = \ell/f$

$h = (L^3/\ell^2) = \ell/f$

f = 0.2

f = 0.1

The optical depth integral is modified according to the clumping-induced effective opacity: $\kappa(1-\epsilon)$

Porosity only affects line profiles if the porosity length (*h*) exceeds the stellar radius

The Chandra line profiles in ζ Pup can be fit by a porous model...

...but huge porosity lengths are required and the fits tend to be worse

Two models from previous slide, but with *perfect resolution*

Joint constraints on τ_* and h_{∞}

 h_{∞} > 2.5 is required if you want to "rescue" the literature mass-loss rate

Even a model with h_{∞} =1 only allows for a slightly larger τ_* and, hence, mass-loss rate

There is NO evidence from X-ray line profiles for significant wind porosity

However, the profiles indicate reduced mass-loss rates, which imply significant small-scale clumping ($f \sim 0.1$) The required degree of porosity is *not* expected from the line-driven instability.

The clumping in 2-D simulations (below) is on quite *small scales*.

The small-scale clumps affect density squared diagnostics: reduced mass-loss rates

But they do not affect the X-ray profiles directly

Conclusions

Many young (< 1Myr) O stars produce strong and hard X-ray emission in their magnetically channeled winds

As they age, softer and weaker X-ray emission is produced via embedded wind shocks in a spherically expanding wind

The X-rays themselves provide information about the wind conditions of O stars, including more evidence for reduced mass-loss rates

Chandra images – evolution of X-ray hardness

M17: ~0.5Myr

NGC 6611: ~5Myr

courtesy Marc Gagné

soft medium hard