X-rays from Massive Stars

David Cohen Swarthmore College

X-ray spectroscopy of hot plasmas

temperature, density, kinematics in stars

charge state distribution in the laboratory

Chandra grating spectra ($R \sim 1000 \sim 300$ km s⁻¹)

 θ^1 Ori C: hotter plasma, narrower emission lines

ζ Pup (O4 I): cooler plasma, broad emission lines

1-D rad-hydro simulation of an O star wind

with Stan Owocki (U. Del.)

Radiation line driving is inherently unstable: shock-heating and X-ray emission

Empirical X-ray Line Profile Model for Data Fitting

continuum absorption in the bulk wind preferentially absorbs red shifted photons from the far side of the wind

Chandra grating spectrum of ζ Pup: Fe XVII line at 15.014 Å

Mass-loss rate is reduced by factor of 4

Laser fusion (ICF) exps and modeling OMEGA Laser @ U. Rochester

Laboratory Astrophysics: Sandia Nat'l Lab: Z-Machine Benchmarking photoionized plasma spectra

Laboratory Astrophysics: Swarthmore Spheromak Exp (SSX)

Characterizing magnetic reconnection heating

Swarthmore Spheromak Experiment (SSX) Reconnection Boundary Layer Experiment

Swarthmore's on the R3. Maybe you'd like to visit and talk about xrays, plasma, and hot star winds this summer?

