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ABSTRACT

We report on four Chandra grating observations of the oblique magnetic rotator �1 Ori C (O5.5 V), covering a
wide range of viewing angles with respect to the star’s 1060 G dipole magnetic field. We employ line-width and
centroid analyses to study the dynamics of the X-ray–emitting plasma in the circumstellar environment, as well as
line-ratio diagnostics to constrain the spatial location, and global spectral modeling to constrain the temperature
distribution and abundances of the very hot plasma. We investigate these diagnostics as a function of viewing angle
and analyze them in conjunction with newMHD simulations of the magnetically channeled wind shock mechanism
on �1 Ori C. This model fits all the data surprisingly well, predicting the temperature, luminosity, and occultation of
the X-ray–emitting plasma with rotation phase.

Subject headinggs: stars: early-type — stars: individual (HD 37022) — stars: magnetic fields — stars: mass loss —
stars: rotation — stars: winds, outflows — X-rays: stars

Online material: color figure

1. INTRODUCTION

�1 Ori C, the brightest star in the Trapezium and the primary
source of ionization of the Orion Nebula, is the only O star
with a measured magnetic field (Donati et al. 2002). This hot
star is an unusually strong and hard X-ray source (Yamauchi &
Koyama 1993; Yamauchi et al. 1996; Schulz et al. 2000), with
its X-ray flux modulated on the star’s 15 day rotation period
(Gagné et al. 1997). Hard, time-variable X-ray emission is not
expected from O stars because they do not possess an outer
convective envelope to drive a solar-type magnetic dynamo.

Rather, the detection of a variable longitudinal magnetic
field by Donati et al. (2002) confirms the basic picture of an
oblique magnetic rotator with a dipolar surface field strength,
B � 1060 G. As such, �1 Ori C, with its relatively strong (Ṁ �
4 ; 10�7)M� yr�1 radiation-driven wind, may be the prototype
of a new class of stellar X-ray source: a young, hot star in which
a hybrid magnetic wind mechanism generates strong and hard,
modulated X-ray emission.

Building on the work of Shore & Brown (1990) for Ap/Bp
stars, Babel & Montmerle (1997a, 1997b) first quantitatively
described the mechanism whereby a radiation-driven wind in
the presence of a strong, large-scale dipole magnetic field can
be channeled along themagnetic field lines. In this magnetically
channeled wind shock (MCWS) model,8 flows from the two

hemispheres meet at the magnetic equator, potentially at high ve-
locity. This head-on collision between fast wind streams can lead
to very high (T 3107 K) shock temperatures, much higher than
those seen in observations of normal O stars (e.g., � Pup; Hillier
et al. (1993). X-ray production in O-type supergiants is attributed
to the line-force instability wind shockmodel (Owocki et al. 1988;
Feldmeier et al. 1997b), in which shocks form from interactions
between wind streams that are flowing radially away from the star
at moderately different speeds.
What makes the MCWS shocks more efficient than instability-

driven wind shocks is the velocity contrast experienced in the
shocks. Themagnetically channeledwind streams collide with the
cool, dense, nearly stationary, postshock plasma at the magnetic
equator. The rapid deceleration of the wind plasma, and the con-
sequent conversion of kinetic energy into heat, causes the strong,
hard shocks seen in theMCWSmodel. This leads to high levels of
X-ray emission, since a large fraction of the wind kinetic energy is
converted into shock heating. In the absence of a strong magnetic
field, O-star winds do not produce a fast wind running into sta-
tionary plasma; the shocks correspondingly lead to lower shock
temperatures and lower luminosity.
This picture of a magnetosphere filled with plasma and co-

rotating with the star is similar to the picture that has been ap-
plied to magnetic Ap/Bp stars (Shore & Brown 1990; Shore
et al. 1990; Smith & Groote 2001). Indeed, Babel &Montmerle’s
first paper on the subject was an application to the Ap star IQ Aur
(Babel & Montmerle 1997a). However, a major difference be-
tween themodel’s application toAp/Bp stars and to youngO stars
is that the winds of O stars are significantly stronger, represent-
ing a nonnegligible fraction of the star’s energy and momen-
tum output. This hybrid magnetic wind model thus is more
than a means of explaining the geometry of circumstellar ma-
terial; it can also potentially explain the intense hard X-ray
emission from young, magnetized hot stars (3 orders of mag-
nitude greater for �1 Ori C than for IQ Aur). As has been pointed
out in the context of the magnetic Ap/Bp stars, if the dipole
field is tilted with respect to the rotation axis, then the rota-
tional modulation of our viewing angle of the magnetic pole
and its effect on observed flux levels and line profiles provides
a important diagnostic tool. We exploit this fact by making
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several Chandra observations of �1 Ori C at different rotational
phases, in order to study the dynamics and geometry of the hot,
X-ray–emitting plasma in the circumstellar environment of this
young, magnetized O star and thus to assess the mechanism
responsible for generating the unusual levels of X-ray emission
in �1 Ori C.

The time-independent nature of the original Babel &
Montmerle model leads to a steady state configuration in which
a postshock ‘‘cooling disk’’ forms at the magnetic equator. In
their model, this disk is essentially an infinite mass sink. This
has an effect on the assumed X-ray absorption properties of
the disk, and it also affects the steady-state spatial, temperature,
and velocity distribution of the hot, X-ray–emitting plasma,
thus affecting the quantitative predictions of observables in
unphysical ways. Babel &Montmerle (1997b) further assume a
rigid magnetic geometry within the magnetosphere, thereby
imposing a prespecified trajectory to the wind streams; namely,
they are forced to flow everywhere along the local dipole field
direction. In reality, if the wind kinetic energy is large enough,
the magnetic field should be distorted. In the extreme case of
a field that is ( locally) weak compared to the wind kinetic en-
ergy, the initially closed field lines will get ripped open and the
flow (and field lines) will be radial, and the focusing of the wind
flow toward the equator and the associated shock heating will
be minimized. Babel & Montmerle (1997b) recognized these
limitations and speculated about the effects of relaxing the
strong-field and steady state assumptions (see also Donati et al.
2002).

To explore these effects, ud-Doula&Owocki (2002) performed
magnetohydrodynamic (MHD) simulations of radiation-driven
winds in the presence of a magnetic field. Their results confirmed
the basic paradigm of the Babel & Montemerle model, wherein a
magnetic field channels the wind material toward the magnetic
equator, where it shocks and cools. If the field is strong enough it
can even confine the wind. The overall degree of such a con-
finement can be determined by a single dimensionless parameter,
�?, which represents the ratio of themagnetic energy density to the
wind kinetic energy density,

�? ¼
B2
eqR

2
?

Ṁv1
; ð1Þ

where Beq is the equatorial dipole magnetic intensity at the stel-
lar surface, R? is the stellar radius, Ṁ is the mass-loss rate, and
v1 is the terminal wind speed. For �?P1, the field is relatively
weak and the wind dominates over the magnetic field by ripping
the field lines into a nearly radial configuration. Nonetheless,
the field still manages to divert some material toward the mag-
netic equator, leading to a noticeable density enhancement. Be-
cause the magnetic field energy density falls off significantly
faster than the wind kinetic energy density, at large radii the
wind always dominates over the field, even for �? 31. TheMHD
simulations reveal some phenomena not predicted by the static
Babel & Montmerle model. Above the closed magnetosphere
near the magnetic equator, where the field lines start to open up,
the magnetically channeled wind still has a large latitudinal ve-
locity component, leading to strong shocks.

The simulations show shock-heated wind plasma above and
below the magnetic equatorial plane, where it cools and then
falls along closed magnetic field lines. This cool, dense, post-
shock plasma forms an unstable disk. Mass in the disk builds up
until it can no longer be supported by magnetic tension, at
which time it falls back down onto the photosphere. The star’s

rotation and the obliquity of the magnetic axis to the rotation
axis lead to periodic occultation of some of the X-ray–emitting
plasma. All of these phenomena should lead to observable,
viewing-angle-dependent diagnostics: temperature distribu-
tion, Doppler line broadening, line shifts, and absorption.

The initial two-dimensional MHD simulations performed by
ud-Doula & Owocki (2002) were isothermal, and the shock
strength and associated heating were estimated on the basis of
the shock-jump velocities seen in theMHD output. For the anal-
ysis of the Chandra HETGS spectra discussed in this paper,
however, new simulations were performed that include adia-
batic cooling and radiative cooling, as well as shock heating,
in the MHD code’s energy equation. In this way, we make de-
tailed, quantitative predictions of plasma temperature and hence
X-ray emission for comparison with the data. Furthermore, the
changes in gas pressure associated with the inclusion of heat-
ing and cooling has the potential to affect the dynamics and thus
the shock physics and geometry of the magnetosphere. We thus
present the most physically realistic modeling to date of X-ray
production in the context of the MCWS model.

In this paper we present two new observations of �1 Ori C
taken with the HETGS on board Chandra, which we analyze in
conjunction with two GTO observations previously published
by Schulz et al. (2000, 2003). These four observations provide
good coverage of the rotational phase and hence sample a broad
range of viewing angles with respect to the magnetosphere. We
apply several spectral diagnostics, including line-width analy-
sis for plasma dynamics, line-ratio analysis for distance from
the photosphere, differential emission measure for the plasma
temperature distribution, and overall X-ray spectral variability
for the degree of occultation and absorption, to these four data
sets. In this way, we characterize the plasma properties and their
variation with phase, or viewing angle, allowing us to compare
these results to the output of MHD simulations and assess the
applicability of the MCWS model to this star.

In x 2 we describe the data and our reduction and analysis
procedure. In x 3 we discuss the properties of �1 Ori C. In x4 we
describe the MHD modeling and associated diagnostic syn-
thesis. In x 5 we report on the results of spectral diagnostics and
their variation with phase. In x 6 we discuss the points of agree-
ment and disagreement between the modeling and the data,
critically assessing the spatial distribution of the shock-heated
plasma and its physical properties in light of the observational
constraints and the modeling. We conclude with an assessment
of the applicability of hybrid magnetic wind models to �1 Ori C
in x 7.

2. Chandra OBSERVATIONS AND DATA ANALYSIS

The Chandra X-ray Observatory observed the Trapezium
with the High Energy Transmission Grating (HETG) spec-
trometer twice during Cycle 1 and twice during Cycle 3. The
Orion Nebula Cluster was also observed repeatedly during
Cycle 4 with the ACIS-I camera with no gratings. Table 1 lists
each observation’s sequence number, observation ID (ObsID),
UT start and end date, exposure time (in kiloseconds), aver-
age phase, and average viewing angle (in degrees). The phase
was calculated using a period of 15.422 days and a zero point
at MJD ¼ 48; 832:5 (Stahl et al. 1996). Assuming a centered
oblique magnetic rotator geometry (see Fig. 1), the viewing
angle � between the line of sight and the magnetic pole is spec-
ified by

cos � ¼ sin � cos � sin iþ cos � cos i; ð2Þ
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where � ¼ 42� is the obliquity (the angle between the rotational
and magnetic axes), i ¼ 45� is the inclination angle, and � is the
rotational phase of the observation (in degrees). In Figure 1 the
arrows at each viewing angle point to Earth. As the star rotates,
the viewing angle varies from � � 3� (nearly pole-on) at phase
� ¼ 0:0 to� � 87

�
(nearly edge-on) at phase � ¼ 0:5. The four

grating observations were obtained at � � 4�; 40�; 80�, and
87�, thus spanning the full range of possible viewing angles.9

The Chandra HETG data were taken with the ACIS-S camera
in TE mode. During ObsID 3 and 4, ACIS CCDs S1-S5 were

used; S0 was not active. During ObsIDs 2567 and 2568, ACIS
CCDs S0-S5 were used. The data were reduced using standard
threads in CIAO version 2.2.1 using CALDB version 2.26.
Events with standardASCA grades 0, 2, 3, 4, and 6were retained.
The data for CCD S4 were destreaked because of a flaw in the
serial readout that causes excess charge to be deposited along
some rows. The data extraction resulted in four first-order spec-
tra for each observation: positive and negative first-order spectra
for both the medium-energy grating (MEG) and high-energy
grating (HEG).
A grating auxiliary response file was calculated for each

grating spectrum. The negative and positive first-order spectra
were then coadded for each observation using the CIAO pro-
gram ADD_GRATING_ORDERS. The four sets of MEG and HEG
spectra are shown in the top four panels of Figures 2 and 3,
respectively. The first-order MEG spectra from each of the four
observations were then co-added to create the spectrum in the
bottom panel of Figure 2. The co-added HEG spectrum is shown
in the bottom panel of Figure 3. The MEG gratings have lower
dispersion than the HEG gratings. However, the MEG is more
efficient than the HEG above 3.5 8. The added spectral resolu-
tion of the HEG is useful for resolving line profiles and lines that
may be blended in the MEG spectrum. Because the HEG and
MEG wavelength solutions were in excellent agreement, the
MEG andHEG spectra were fit together to increase the signal-to-
noise ratio (S/N).
The spectra show very strong line and continuum emission

below 10 8, indicating a very hot, optically thin plasma. The
relatively low line-to-continuum ratio from 9 to 12 8 suggests
subsolar Fe abundance. Photons with k > 24 8 are nearly en-
tirely absorbed by neutral hydrogen, helium, and metals in the
wind of �1 Ori C, in the neutral lid of the Orion Nebula, and in
the line-of-sight interstellar medium (ISM).
We analyzed the extracted spectra in several different ways.

In x 5 we discuss the diagnostics that we bring to bear on the
determination of the properties of the hot plasma, but first we
describe our data analysis procedures. Our first goal was to de-
termine centroid wavelengths, intensities, and noninstrumental
line widths for the 80 or so brightest emission lines. Our second
goal was to determine the basic physical properties of the X-ray–
emitting plasma.

2.1. Global Spectral Fits

In order to determine the temperatures, emission measures,
and abundances of the emitting plasma and the column density

TABLE 1

Chandra Observations of �1 Ori C

Sequence

Number ObsID Detector Grating

Start Date

(UT)

Start Time

(UT)

End Date

(UT)

End Time

(UT)

Exposure Time

(ks)

Average

Phasea
Viewing Angleb

(deg)

200001............ 3 ACIS-S HETG 1999 Oct 31 05:47:21 1999 Oct 31 20:26:13 52.0 0.84 40

200002............ 4 ACIS-S HETG 1999 Nov 24 05:37:54 1999 Nov 24 15:08:39 33.8 0.38 80

200175............ 2567 ACIS-S HETG 2001 Dec 28 12:25:56 2001 Dec 29 02:00:53 46.4 0.01 4

200176............ 2568 ACIS-S HETG 2002 Feb 19 20:29:42 2002 Feb 20 10:01:59 46.3 0.47 87

200214............ 4395 ACIS-I None 2003 Jan 8 20:58:19 2003 Jan 10 01:28:41 100.0 0.44 85

200214............ 3744 ACIS-I None 2003 Jan 10 16:17:39 2003 Jan 12 14:51:52 164.2 0.58 84

200214............ 4373 ACIS-I None 2003 Jan 13 07:34:44 2003 Jan 15 08:12:49 171.5 0.75 58

200214............ 4374 ACIS-I None 2003 Jan 16 00:00:38 2003 Jan 17 23:56:05 169.0 0.92 19

200214............ 4396 ACIS-I None 2003 Jan 18 14:34:49 2003 Jan 20 13:15:31 164.6 0.09 23

200193............ 3498 ACIS-I None 2003 Jan 21 06:10:28 2003 Jan 22 02:09:20 69.0 0.23 54

a Assuming ephemeris P ¼ 15:422 days and MJD0 ¼ 48832:5 (Stahl et al. 1996).
b Assuming inclination i ¼ 45� and obliquity � ¼ 42� (Donati et al. 2002).

Fig. 1.—Schematic of �1 Ori C and its circumstellar environment. The
curved lines represent a set of magnetic field lines stretched out by the wind. The
vector indicates the magnetic axis, and the dashed line represents the magnetic
equatorial plane. The viewing angles in degrees with respect to the magnetic
axis of the four Chandra observations, � , are indicated by the four labels, 4, 40,
80, and 87. The triangular arrows point to the observer. In this figure, taken from
the perspective of the star’s magnetic axis, the observer appears to move from
� � 3� (at rotational phase 0.0) to � � 87� (at rotational phase 0.5), back to
� � 3� (at rotational phase 1.0) as a result of the magnetic obliquity, � ¼ 42�.
The rotation axis, which we assume is inclined by approximately 45� to the
observer, is not shown because it too would move. The hard X-ray–emitting
region is shown schematically as a gray torus. At high viewing angles, the entire
torus is visible (X-ray maximum). At low viewing angles, some of the torus is
occulted (X-ray minimum).

9 An online animation available at http://www.bartol.udel.edu/t1oc illustrates
our view of the magnetosphere as a function of rotational phase.
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Fig. 2.—All four co-added, first-order MEG spectra, ordered according to viewing angle (pole-on to equator-on). The bottom panel shows an averaged MEG
spectrum composed of the four individual spectra. The low count rate at long wavelengths is due to ISM attenuation.



Fig. 3.—All four co-added, first-order HEG spectra, ordered according to viewing angle (pole-on to equator-on). The bottom panel shows an averaged HEG
spectrum composed of the four individual spectra. The HEG has higher spectral resolution than the MEG, but lower throughput longward of approximately 3.5 8.



of the overlying gas, we fit the HEG/MEG spectra using the
ISIS10 software package. We obtained acceptable fits to the
1.8–23 8 HEG and MEG spectra using a two-temperature
variable-abundance APED11 emission model with photoelectric
absorption fromneutral ISMgas (Morrison&McCammon1983).
The free parameters were the column density, the two tempera-
tures, the two normalizations, the redshift, the turbulent velocity,
and the abundances of O, Ne, Mg, Si, S, Ar, Ca, and Fe.

We note that a number of emission-measure profiles EM(T )
can be used to fit the spectra, all giving rise to similar results: a
dominant temperature component near 30 MK, and a second
temperature peak near 8MK.We chose the simplest model with
the fewest free parameters that adequately fit the data: a two-
temperature, variable abundance APEC model in ISIS. We also
note that with all the thermal emission models we tried, non-
solar abundances were needed to correctly fit the emission lines.

As we discuss in x 5, we find small but significant shifts in the
line centroids. The ISIS plasma emission model has one ad-
vantage over those in SHERPA and XSPEC: it explicitly and
consistently accounts for thermal, nonthermal, and instrumen-
tal line broadening. The width of a line corrected for instru-
mental broadening is the Doppler velocity, vD, as defined by
Rybicki & Lightman (1979),

vD ¼ c

k0
�kD ¼ c

k0

FWHMffiffiffiffiffiffiffiffiffiffiffi
ln 16

p ¼ 2kT

m
þ �2

� �1=2

; ð3Þ

where v th ¼ 2kT /mð Þ1=2 is the thermal broadening component and
� is the rms of the turbulent velocities; � is used simply as a
standard means of parameterizing the component of the line width
caused by nonthermal bulk motion (assumed to be Gaussian). As
we discuss further in x 5, the nonthermal, noninstrumental width
parametrized by � is probably the result of bulk motion of shock-
heated wind plasma, and not, strictly speaking, physical micro-
turbulence as described by Rybicki & Lightman (1979). Note
that vD and � thus defined are related to vHWHM, often used as a
velocity-width parameter when broadening is due to a stellar
wind, as vHWHM ¼ 0:83vD.

The spectral analysis showed no obvious changes in abun-
dance with phase. The best-fit abundances and 1 � uncertainties
are shown in the ‘‘Global Fit’’ column of Table 5. These abun-
dances were then fixed for the fits at each rotational phase. Those
best-fit parameters and 1 � uncertainties are shown in Table 6.
The most notable result of the global fitting is that most of the
plasma is at T � 30 MK and that the temperatures do not vary
significantly with phase. The phase-to-phase spectral variations
seen in Figures 2 and 3 appear to be caused by changes in visible
emission measure. One disadvantage of this type of global fitting
is that the thermal emission models currently in ISIS, SHERPA,
and XSPEC do not account for the effects of high density and/or
UV radiation. For this, we model the individual line complexes
(see x 5.2).

2.2. Line Profile Analysis

SHERPA, the CIAO spectral fitting program, was used to fit
the 24 strongest line complexes of O, Ne, Mg, Si, S, Ar, Ca, and
Fe in the 1.75–23 8 range. In the 3–13 8 region, the HEG and
MEG spectra were simultaneously fit for each complex. Below

3 8, the MEG spectra have low S/N and only the HEG spectra
were used. Above 13 8, the HEG spectra have low S/N and
only the MEG spectra were used. Because each line complex
typically contains 1–8 relatively bright lines, multiple Gaussian
components were used to model the brightest lines in a complex
(as estimated by their relative intensities at 30 MK in APED).
Emission from continua and very faint lines across each com-
plex was modeled simply as an additive constant. We note, e.g.,
that unresolved doublets were modeled as two Gaussians, with
the emissivity of the fainter of the pair tied to the emissivity
of the brighter. To further minimize the number of free param-
eters, the centroid wavelengths and widths of all lines in a com-
plex were tied to that of the brightest line in that complex.

For example, a typical He-like line complex such as Si xiii (see
Fig. 12c) was modeled with six Gaussians: the Si xiii resonant
(singlet), intercombination (doublet), and forbidden (singlet) lines
plus the Mg xii resonant doublet. This particular complex had six
free parameters: one constant, one line width, one line shift (rel-
ative to APED), and three intensities (Si xiii resonance, one Si xiii
intercombination, and Si xiii forbidden). In this case, the Mg xii

emission was blended with the Si xiii forbidden line. In these
cases, blending leads to higher uncertainties in the line parameters.
In this example, theMg xii line was accounted for by tying its flux
to the flux of the Si xiii resonance line, scaled by the emissivity
ratio of those lines in APED and the Mg/Si ratio from globally
fitting the HEG/MEG spectra.

The resulting SHERPA fits are shown in the first nine col-
umns of Table 2. The ion, transition, and rest wavelength k0 are
from APED. Free parameters have associated 1 � errors; tied
parameters do not. As expected, line and continuum fluxes were
approximately 30% higher during ObsID 2567 (viewing angle
� ¼ 4

�
) than during ObsID 2568 (� ¼ 87

�
), with intermediate

fluxes during ObsIDs 3 and 4.
Because SHERPA does not explicitly account for thermal and

nonthermal line broadening, the individual line complexes were
fit a second time with ISIS to derive the rms turbulent velocities
and abundances. The � and relevant abundance parameters for a
given line complex were allowed to vary while the emission and
absorption parameters (temperatures, normalizations, other abun-
dances, and column density) were frozen. The resulting abun-
dances and 1 � uncertainties are listed in the ‘‘Line Fit’’ column
of Table 5. The Fe abundance was determined from numerous
ionization stages in six line complexes. For Fe, � is the standard
deviation of these six Fe abundance fits. The individual rms tur-
bulent velocities � are listed in the last two columns of Table 2.

Summarizing the results of the spectral fitting, we conclude
that some elements (especially Fe) have nonsolar abundances,
most of the plasma is at a temperature around 30 MK, the lines
are resolved but much narrower than the terminal wind velocity,
and only the overall emission measure appears to vary signifi-
cantly with phase.

We note that the zeroth-order ACIS-S point-spread function
(PSF) of �1 Ori C is substantially broader than nearby point
sources and substantially broader than the nominal ACIS PSF.
We have taken the best-fit model from ISIS and made MARX
simulations of the zeroth-order PSF. The simulations show that
the excess broadening in the zeroth-order image is a result of
pileup in the ACIS-S CCD. Pixels in the core of the PSF register
multiple events occurring within a single 3.2 s readout as a
single higher-energy count. In the wings of the PSF, the count
rate per pixel is much lower and pileup is reduced. Hence the
spatial profile is less peaked than it would be without pileup.
Because the count rate per pixel in the first-order lines is much
lower than in zeroth order, the lines in the dispersed spectra are

10 ISIS: Interactive Spectral Interpretation System, version 1.1.3.
11 The Astrophysical Plasma Emission Database is an atomic data collection

to calculate plasma continuum + emission-line spectra. See Smith et al. (2001)
and references therein.
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TABLE 2

HEG and MEG Line List for �1 Ori C: Combined Observations

Ion Transition

k0
(8)

k
(8)

�k
(8)

106fl
(photons cm�2 s�1)

106�f
( photons cm�2 s�1)

vD
(km s�1)

�v
(km s�1)

�a

(km s�1)

��
(km s�1)

Fe xxv ...................... 1s2p 1P1 ! 1s2 1S0 1.8504 1.8498 0.0009 26.23 4.86 409 . . . 300 . . .
1s2p 3P2 ! 1s2 1S0 1.8554 1.8548 . . . 10.00 2.62 409 . . . 300 . . .

1s2p 3P1 ! 1s2 1S0 1.8595 1.8589 . . . 9.57 . . . 409 . . . 300 . . .

1s2s 3S1 ! 1s2 1S0 1.8682 1.8676 . . . 28.47 4.56 409 . . . 300 . . .

Ca xix ....................... 1s2p 1P1 ! 1s2 1S0 3.1772 3.1746 0.0013 8.70 1.62 426 263 300 . . .
1s2p 3P2 ! 1s2 1S0 3.1891 3.1865 . . . 4.32 0.88 426 . . . 300 . . .

1s2p 3P1 ! 1s2 1S0 3.1927 3.1901 . . . 3.66 . . . 426 . . . 300 . . .

1s2s 3S1 ! 1s2 1S0 3.2110 3.2083 . . . 6.93 1.52 426 . . . 300 . . .

Ar xviii ..................... 2p 2P3=2 ! 1s 2S1=2 3.7311 3.7308 0.0016 6.48 1.16 400 . . . 400 . . .
2p 2P1=2 ! 1s 2S1=2 3.7365 3.7362 . . . 3.10 . . . 400 . . . 400 . . .

1s2p 1P1 ! 1s2 1S0 3.9491 3.9489 0.0009 13.02 1.91 413 132 300 . . .

Ar xvii ...................... 1s2p 3P2 ! 1s2 1S0 3.9659 3.9657 . . . 3.38 0.75 413 . . . 300 . . .

1s2p 3P1 ! 1s2 1S0 3.9694 3.9692 . . . 3.46 . . . 413 . . . 300 . . .
S xvi ......................... 3p 2P3=2 ! 1s 2S1=2 3.9908 3.9906 . . . 2.44 . . . 413 . . . 300 . . .

Ar xvii ...................... 3p 2P1=2 ! 1s 2S1=2 3.9920 3.9918 . . . 1.22 . . . 413 . . . 300 . . .

1s2s 3S1 ! 1s2 1S0 3.9942 3.9940 . . . 12.37 1.95 413 . . . 300 . . .
S xvi ......................... 2p 2P3=2 ! 1s 2S1=2 4.7274 4.7270 0.0006 41.28 2.21 539 77 478 82

2p 2P1=2 ! 1s 2S1=2 4.7328 4.7324 . . . 19.73 . . . 539 . . . 478 . . .

S xv .......................... 1s2p 1P1 ! 1s2 1S0 5.0387 5.0382 0.0005 50.53 3.15 331 55 b . . .

1s2p 3P2 ! 1s2 1S0 5.0631 5.0626 . . . 6.54 0.98 331 . . . . . . . . .
1s2p 3P1 ! 1s2 1S0 5.0665 5.0660 . . . 9.39 . . . 331 . . . . . . . . .

1s2s 3S1 ! 1s2 1S0 5.1015 5.1010 . . . 21.92 2.51 331 . . . . . . . . .

Si xiv ........................ 2p 2P3=2 ! 1s 2S1=2 6.1804 6.1803 0.0002 75.47 1.60 355 23 305 28

2p 2P1=2 ! 1s 2S1=2 6.1858 6.1857 . . . 36.15 . . . 355 . . . 305 . . .
Si xiii ........................ 1s2p 1P1 ! 1s2 1S0 6.6479 6.6480 0.0003 61.40 1.88 370 21 b . . .

1s2p 3P2 ! 1s2 1S0 6.6850 6.6851 . . . 14.04 1.03 370 . . . . . . . . .

1s2p 3P1 ! 1s2 1S0 6.6882 6.6883 . . . 5.40 . . . 370 . . . . . . . . .
Mg xii ....................... 4p 2P3=2 ! 1s 2S1=2 6.7378 6.7379 . . . 7.86 . . . 370 . . . . . . . . .

4p 2P1=2 ! 1s 2S1=2 6.7382 6.7383 . . . 3.93 . . . 370 . . . . . . . . .

Si xiii ........................ 1s2s 3S1 ! 1s2 1S0 6.7403 6.7404 . . . 18.98 1.45 370 . . . . . . . . .

Mg xii ....................... 3p 2P3=2 ! 1s 2S1=2 7.1058 7.1039 0.0009 10.97 0.77 360 54 311 54

3p 2P1=2 ! 1s 2S1=2 7.1069 7.1050 . . . 5.25 . . . 360 . . . 311 . . .

Fe xxiv ..................... 1s25p 2P3=2 ! 1s22s 2S1=2 7.1690 7.1687 0.0010 8.49 0.74 360 . . . 311 . . .

1s25p 2P1=2 ! 1s22s 2S1=2 7.1690 7.1687 . . . 4.15 . . . 360 . . . 311 . . .

1s24p 2P3=2 ! 1s22s 2S1=2 7.9857 7.9837 0.0009 13.36 0.81 363 63 336 61

1s24p 2P1=2 ! 1s22s 2S1=2 7.9960 7.9940 . . . 6.81 . . . 363 . . . 336 . . .

Mg xii ....................... 2p 2P3=2 ! 1s 2S1=2 8.4192 8.4183 0.0003 47.73 1.25 364 20 328 21

2p 2P1=2 ! 1s 2S1=2 8.4246 8.4237 . . . 22.91 . . . 364 . . . 328 . . .
Mg xi........................ 1s2p 1P1 ! 1s2 1S0 9.1687 9.1693 0.0007 28.89 1.68 415 49 b . . .

1s2p 3P2 ! 1s2 1S0 9.2282 9.2288 . . . 2.17 0.19 415 . . . . . . . . .

1s2p 3P1 ! 1s2 1S0 9.2312 9.2318 . . . 15.20 . . . 415 . . . . . . . . .

1s2s 3S1 ! 1s2 1S0 9.3143 9.3149 . . . 1.36 1.15 415 . . . . . . . . .
Fe xxiv ..................... 1s23p 2P3=2 ! 1s22s 2S1=2 10.6190 10.6205 0.0006 44.26 1.77 316 26 288 30

1s23p 2P1=2 ! 1s22s 2S1=2 10.6630 10.6645 . . . 23.28 . . . 316 . . . 288 . . .

Fe xxiii...................... 1s22s3p 1P1 ! 1s22s2 1S0 10.9810 10.9821 . . . 25.83 1.90 300 . . . 263 . . .

1s22s3p 3P1 ! 1s22s2 1S0 11.0190 11.0201 . . . 11.39 . . . 300 . . . 263 . . .
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TABLE 2—Continued

Ion Transition

k0
(8)

k
(8)

�k
(8)

106fl
( photons cm�2 s�1)

106�f
( photons cm�2 s�1)

vD
(km s�1)

�v
(km s�1)

�a

(km s�1)

��
(km s�1)

Fe xxiv ..................... 1s23d 2D3=2 ! 1s22p 2P1=2 11.0290 11.0301 0.0007 30.29 1.61 300 27 263 31

1s23d 2D5=2 ! 1s22p 2P3=2 11.1760 11.1744 0.0006 42.87 2.13 236 33 213 38

1s23d 2D3=2 ! 1s22p 2P3=2 11.1870 11.1854 . . . 4.67 . . . 236 . . . 213 . . .

Fe xxiii...................... 1s22s3d 1D2 ! 1s22s2p 1P1 11.7360 11.7413 0.0006 48.87 2.78 387 37 387 40

Fe xxii ...................... 1s22s23d 2D3=2 ! 1s22s22p 2P1=2 11.7700 11.7753 . . . 25.58 2.40 387 . . . 387 . . .

Ne x.......................... 2p 2P3=2 ! 1s 2S1=2 12.1321 12.1300 0.0007 56.30 2.17 351 36 488 35

2p 2P1=2 ! 1s 2S1=2 12.1375 12.1354 . . . 27.05 . . . 351 . . . 488 . . .

Fe xxiii...................... 1s22s3s 1S0 ! 1s22s2p 1P1 12.1610 12.1589 . . . 21.17 . . . 351 . . . 488 . . .
Ne ix......................... 1s2p 1P1 ! 1s2 1S0 13.4473 13.4386 0.0029 33.29 4.09 623 86 b . . .

Fe xix ....................... 2s22p33d 3S1 ! 2s22p4 3P2 13.4620 13.4533 . . . 5.93 0.61 623 . . . . . . . . .

1s22s22p1=22p
2
3=23d3=2 ! 2s22p4 3P2 13.4970 13.4883 . . . 10.38 . . . 623 . . . . . . . . .

Fe xxi ....................... 1s22s2p21=23s ! 1s22s2p3 3D1 13.5070 13.4983 . . . 9.14 . . . 623 . . . . . . . . .

Fe xix ....................... 2s22p33d 3D3 ! 2s22p4 3P2 13.5180 13.5093 . . . 22.90 . . . 623 . . . . . . . . .

Ne ix......................... 1s2p 3P2 ! 1s2 1S0 13.5503 13.5416 . . . 0.99 . . . 623 . . . . . . . . .

1s2p 3P1 ! 1s2 1S0 13.5531 13.5444 . . . 25.38 4.10 623 . . . . . . . . .
1s2s 3S1 ! 1s2 1S0 13.6990 13.6903 . . . 0.41 2.77 623 . . . . . . . . .

Fe xx ........................ 1s22s22p1=22p3=23p3=2 ! 2s2p4 4P3=2 14.9978 14.9993 . . . 0.10 0.33 614 . . . 700 . . .

Fe xix ....................... 2s22p33s 1D2 ! 2s22p4 1D2 15.0117 15.0132 . . . 1.42 . . . 614 . . . 700 . . .

Fe xvii ...................... 2s22p53d 1P1 ! 2s22p6 1S0 15.0140 15.0155 0.0019 82.64 5.75 614 67 700 78

Fe xx ........................ 1s22s22p23=23p3=2 ! 2s2p4 2D5=2 15.0164 15.0176 . . . 0.26 . . . 614 . . . 700 . . .

Fe xviii...................... 2s22p43s 2P3=2 ! 2s22p5 2P3=2 16.0040 16.0074 . . . 13.34 2.01 325 . . . 456 . . .

O viii......................... 3p 2P3=2 ! 1s 2S1=2 16.0055 16.0089 0.0032 5.78 2.57 325 93 456 67

3p 2P1=2 ! 1s 2S1=2 16.0067 16.0101 . . . 2.77 . . . 325 . . . 456 . . .

Fe xviii...................... 2s22p43s 4P5=2 ! 2s22p5 2P3=2 16.0710 16.0662 0.0042 16.41 . . . 325 . . . 456 . . .

Fe xix ....................... 1s22s22p1=22p
2
3=23p1=2 ! 2s2p5 3P2 16.1100 16.1134 . . . 8.90 . . . 325 . . . 456 . . .

Fe xvii ...................... 2s22p53s 1P1 ! 2s22p6 1S0 16.7800 16.7781 0.0033 34.25 4.87 431 85 456 . . .
Fe xix ....................... 1s22s22p1=22p

2
3=23p3=2 ! 2s2p5 1P1 17.0311 17.0299 . . . 1.29 . . . 313 . . . 290 . . .

1s22s22p21=22p3=23p1=2 ! 2s2p5 3P1 17.0396 17.0382 . . . 0.33 . . . 313 . . . 290 . . .

Fe xvii ...................... 2s22p53s 3P1 ! 2s22p6 1S0 17.0510 17.0498 0.0029 32.82 5.16 313 64 290 87

2s22p53s 3P2 ! 2s22p6 1S0 17.0960 17.0948 . . . 29.00 4.97 313 . . . 290 . . .
O viii......................... 2p 2P3=2 ! 1s 2S1=2 18.9671 18.9677 0.0037 67.49 9.54 888c 240 851 146

2p 2P1=2 ! 1s 2S1=2 18.9725 18.9731 . . . 32.53 . . . 888 . . . 851 . . .

O vii ......................... 1s2p 1P1 ! 1s2 1S0 21.6015 21.5917 0.0113 16.98 9.19 292 . . . b . . .

1s2p 3P2 ! 1s2 1S0 21.8010 21.7912 . . . 5.82 3.80 292 . . . . . . . . .
1s2p 3P1 ! 1s2 1S0 21.8036 21.7938 . . . 8.60 . . . 292 . . . . . . . . .

1s2s 3S1 ! 1s2 1S0 22.0977 22.0879 . . . 0.00 6.20 292 . . . . . . . . .

Note.—Nonzero errors are reported for free parameters only.
a � is the microturbulant velocity as defined by, e.g., Rybicki & Lightman (1979). Note that the ISIS plasma model explicitly accounts for thermal broadening. Hence, � < vD.
b He-like complexes were not fit in ISIS because the APEC model does not account for suppression of the forbidden lines as a result of far-UV photoexcitation.
c O viiiwas fit using a two-Gaussian model; a narrow component with Doppler width fixed at vD ¼ 300 km s�1 and a broad component with best-fit vD ¼ 1153 km s�1. The vD reported above is the flux-weighted average of

the two Doppler widths.

9
9
3



not broadened by pileup. We conclude that the measured line
velocities are not caused by instrumental effects. Noninstru-
mental Gaussian line shapes provide adequate fits to the data.
Non-Gaussian line shapes, while perhaps present, could only be
detected with higher S/N data.

3. PROPERTIES OF �1 Ori C

In order to put the results of the spectral fitting and the MHD
modeling into a physical context, we must first specify the stellar
and wind parameters of �1 Ori C, as well as elaborate on the
geometry and distribution of circumstellar matter, as constrained
by previous optical and UV measurements. The spectral type of
the star is usually taken to be O6 V or O7 V, although its spec-
tral variability was first noted byConti (1972). Donati et al. (2002)
assume a somewhat hot effective temperature, TeA ¼ 45;500 K,
which is based on the O5.5 V type used by Howarth & Prinja
(1989), which itself is an average of Walborn’s (1981) range of
O4–O7. Walborn (1981) showed that lines often used to deter-
mine spectral type (He i k4471, He ii k4542 and k4686) are highly
variable on timescales of about a week, suggesting a period ‘‘on
the order of a few weeks.’’ He compared �1 Ori C’s line-profile
variations to those of themagnetic B2Vp star�Ori E, even noting
then that �1 Ori C’s X-ray emission, recently discovered with the
Einstein Observatory, may be related to its He ii k4686 emission.

Based on a series of H� and He ii k4686 spectra obtained
over many years, Stahl et al. (1993, 1996) and Reiners et al.
(2000) have determined that the inclination angle of �1 Ori C
is i � 45� and the rotational period P ¼ 15:422 � 0:002 days.
The inclination angle estimate is based on arguments about
the symmetry of the light curve and spectral variability, as well
as plausibility arguments based on the inferred stellar radius. As
expected from its long rotation period, �1 Ori C’s projected rota-
tional velocity is quite low, with Reiners et al. (2000) finding a
value of v sin i ¼ 32 � 5 km s�1 using the O iii k5592 line core.

The Zeeman signature measurements of Donati et al. (2002)
indicate a strong dipole field, with no strong evidence for higher
order field components. The five sets of Stokes parameters in-
dicate a magnetic obliquity � � 42� if i ¼ 45�. These num-
bers then imply a photospheric polar magnetic field strength of
Bp ¼ 1060 � 90 G. The obliquity and polar field strength take
on modestly different values if the inclination angle is assumed
to be as small as i ¼ 25� or as large as i ¼ 65�.

As a result of these various determinations of stellar prop-
erties, we adopt two sets of stellar parameters that likely bracket
those of �1 Ori C. These are listed in Table 3, and are based
on the PHOENIX spherical non-LTE model atmospheres of
Aufdenberg (2001).

The theoretical wind values listed in Table 3 are consistent
with the observed values of Ṁ ¼ 4 ; 10�7 M� yr�1 (Howarth &
Prinja 1989) and v1 � 2500 km s�1 (Stahl et al. 1996). The
stellar wind properties, as seen in UV resonance lines, are
modulated on the rotation period of the star (Walborn &
Nichols 1994; Reiners et al. 2000), which, when combined with
variable H� (Stahl et al. 1996) and the new measurement of the
variable magnetic field (Donati et al. 2002), lead to a coherent
picture of an oblique magnetic rotator, with circumstellar ma-
terial channeled along the magnetic equator. This picture is
summarized in Figure 1, which also indicates the viewing angle
relative to themagnetic field for our fourChandra observations.
When we see the system in the magnetic equatorial plane, the

excess UVwind absorption is greatest. When we see the system
magnetic pole on, the UV excess is at its minimum, while the
longitudinal magnetic field strength is maximum, as are the
X-ray and H� emission (Stahl et al. 1993; Gagné et al. 1997).
These results are summarized in Figure 4, where we show

TABLE 3

Stellar and Wind Parameters

Propertya Cool Model Hot Model

Spectral Type .......................................... O7 V O5.5 V

Teff (K) .................................................... 42,280 44,840

log L(L�)................................................. 5.4 5.4

R(R�) ....................................................... 9.1 8.3

log q0( photons cm
�2 s�1) ....................... 24.4 24.6

log q1( photons cm
�2 s�1) ....................... 23.6 23.9

log q2( photons cm
�2 s�1) ....................... 17.4 18.5

Ṁ (M� yr�1) ........................................... 5.5 ; 10�7 1.4 ; 10�6

v1 (km s�1) ............................................ 2760 2980

a The values q0, q1, and q2 are the numbers of photons per unit area per unit
time from the stellar surface R? shortward of 912, 504, and 228 8, capable of
ionizing H i, He i, and He ii, respectively.

Fig. 4.—Phase-folded light curves of �1 Ori C. Top: Open circles indicate the
excess C iv equivalent width (left axis) taken fromWalborn & Nichols (1994) and
phased to the ephemeris of Stahl et al. (1996): period P ¼ 15:422 days and epoch
MJD0 ¼ 48832:50.MaximumC iv absorption occurs near phase 0.5 (� ¼ 3�) as a
result of outflowing plasma in the magnetic equatorial plane. Note that Walborn &
Nichols (1994) calculateWk by subtracting the IUE spectrum at a given phase from
the IUE spectrum with the shallowest line profile, then calculating the equivalent
width of the line in the difference spectrum. Filled circles show the longitudinal
magnetic field strength,Bl (right axis), asmeasured byDonati et al. (2002) using the
same ephemeris. Note thatWalborn&Nichols (1994) and Donati et al. (2002) used
different period estimates. The Bl is maximum near phase 0.0 when the magnetic
pole is in the line of sight. Bottom: H� equivalent width (solid curve) from Stahl
et al. (1996). The data points with error bars represent the ACIS-I count rate from
the 850 ksChandraOrion Ultra-Deep Project. X-ray and H� maxima occur at low
viewing angles when the entire X-ray torus is visible; the minima occur when part
of the X-ray torus is occulted by the star.
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14 days of data from the 850 ks Chandra Orion Ultra-Deep
Project. These data were obtained with the ACIS-I camera with
no gratings. Because �1 Ori C’s count rate far exceeds the read-
out rate of the ACIS-I CCD, the central pixels of the source
suffer from severe pileup. For Figure 4 (bottom), counts were
extracted from an annular region in the wings of the PSF where
pileup was negligible As a result, the Chandra light curve does
not show the absolute count rate in the ACIS-I instrument. The
light curve shows long-term variability induced by rotation and
occultation and statistically significant short-term variability
that may reflect the dynamic nature of the magnetically chan-
neled wind shocks.

These four different observational results are consistent with
this picture provided that the H� emission is produced in the
postshock plasma near the magnetic equatorial plane. Smith &
Fullerton (2005) have reanalyzed the 22 high-dispersion IUE
spectra of �1 Ori C and reinterpreted the time-variable UV and
optical line profiles in terms of the magnetic geometry of Donati
et al. (2002). Smith & Fullerton (2005) find that the C iv and N v

lines at phase 0.5 (nearly edge-on) are characterized by high,
negative-velocity absorptions and lower, positive-velocity emis-
sion, superposed on the baseline P Cygni profile. Similarly, some
of the optical Balmer-line and He ii emissions appear to be pro-
duced by postshock gas falling back onto to the star. In the fol-
lowing sections, we further constrain and elaborate on this picture
by using several different X-ray diagnostics in conjunction with
MHD modeling.

We note finally that �1 Ori C has at least one companion.
Weigelt et al. (1999) find a companion at 33 mas via infrared
speckle interferometry. Donati et al. (2002) estimate its orbital
period to be 8–16 yr and Schertl et al. (2003) estimate its spec-
tral type as B0–A0. This places the companion at 15 AU, too far
to significantly interact with the wind or the magnetic field of �1

Ori C. The amplitude and timescale of the X-ray luminosity var-
iations cannot be caused by colliding-wind emission with the
companion, by occultation by the companion, or by the com-
panion itself (Gagné et al. 1997).

4. MAGNETOHYDRODYNAMIC MODELING
OF THE MAGNETICALLY CHANNELED

WIND OF �1 ORI C

4.1. Basic Formulation

As discussed in x 1, we have carried out MHD simulations
tailored specifically for the interpretation of the �1 Ori C X-ray
data presented in this paper. Building upon the full MHD mod-
els by ud-Doula & Owocki (2002), these simulations are self-
consistent in the sense that the magnetic field geometry, which
is initially specified as a pure dipole with a polar field strength of
1060 G, is allowed to adjust in response to the dynamical influ-
ence of the outflowing wind. As detailed below, a key improve-
ment over the isothermal simulations of ud-Doula & Owocki
(2002) is that we now use an explicit energy equation to follow
shock heating of material to X-ray–emitting temperatures.

The overall wind driving, however, still follows a local
CAK/Sobolev approach that suppresses the ‘‘line deshadowing
instability’’ for structure on scales near and below the Sobolev
length, l � vthr/v � 10�2r, where r is the radius and v and v th are
the flow and thermal speeds, respectively (Lucy & Solomon
1970; MacGregor et al. 1979; Owocki & Rybicki 1984, 1985).
For nonmagnetic winds, one-dimensional simulations using a
nonlocal, non-Sobolev formulation for the line force (Owocki
et al. 1988; Owocki & Puls 1999; Runacres & Owocki 2002)
show that this instability can lead to embedded weak shock

structures that might reproduce the soft X-ray emission
(Feldmeier 1995; Feldmeier et al. 1997b) observed in hot stars
like � Pup (Waldron & Cassinelli 2001; Kramer et al. 2003a).
However, it seems unlikely that such small-scale, weak-shock
structures can explain the much harder X-rays observed from
�1 Ori C. Given, moreover, the much greater computational
expense of the nonlocal line-force computation, especially for
the two-dimensional models computed here (Dessart & Owocki
2003, 2005), we retain the much simpler, CAK/Sobolev form
for the line driving. In the absence of a magnetic field, such an
approach just relaxes to the standard, steady-state, spherically
symmetric CAK solution. As such, the extensive flow structure,
and associated hard X-ray emission, obtained in theMHDmodels
here are a direct consequence of the wind channeling by the as-
sumed magnetic dipole originating from the stellar surface.

Since the�15 day rotation period of �1 Ori C is much longer
than the characteristic wind flow time of a fraction of a day, we
expect that associated centrifugal and coriolis terms should
have limited effect on either the wind dynamics or the magnetic
field topology. Thus, for simplicity, and to retain the compu-
tational efficiency of axisymmetry, the numerical simulations
here formally assume no rotation. However, in comparing the
resulting X-ray emission to observations, we do account for the
rotational modulation arising from the change in observer view-
ing angle with rotational phase, using the estimated inclination
angle i � 45� between the rotation axis and the observer’s line
of sight, and obliquity � � 42�.

4.2. Energy Balance with Shock Heating and Radiative Cooling

In order to derive quantitative predictions for the X-ray emis-
sion from the strong wind shocks that arise from the magnetic
confinement, the simulations here extend the isothermal models
of ud-Doula &Owocki (2002) to include a detailed treatment of
the wind energy balance, accounting for both shock heating and
radiative cooling. Specifically, the total time derivative (D/Dt)
of wind internal energy density e [related to the gas pressure p
by e ¼ p/(	 � 1) ¼ (3/2)p for a ratio of specific heats 	 ¼ 5/3
appropriate for a monatomic gas] is computed from



D(e=
)

Dt
¼ �
:=pþ H � C; ð4Þ

where 
 is the mass density, and H and C represent volumetric
heating and cooling terms. In steady hot-star winds, the flow is
kept nearly isothermal at roughly the stellar effective temper-
ature (few ; 104 K) through the near balance between heating
by photoionization from the underlying star and cooling by
radiative emission (mostly in lines; see, e.g., Drew 1989). In
such steady outflows, both the heating and cooling terms are
intrinsically much larger than the adiabatic cooling from the
work expansion, as given by the first term on the right-hand side
of the energy equation.

But in variable, structured winds with compressive shocks,
this first term can now lead to strong compressive heating, with
some material now reaching much higher, X-ray–emitting
temperatures. Through numerical time integrations of the en-
ergy equation, our MHD simulations account directly for this
compressive heating near shocks, also imposing a floor value at
the photospheric effective temperature to account for the effect
of photoionization heating on the relatively cool, expanding
regions. In the simulations, the temperature of the far wind is
T ¼ 45; 700 K, slightly warmer than the O5.5 photosphere (see
Table 3).
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The shock-heated material is cooled by the radiative loss
term, which is taken to follow the standard form for an optically
thin plasma,

C ¼ nenHL(T ); ð5Þ

where ne and nH are the numbers densities for electrons and
hydrogen atoms, and T is the electron temperature.

A proper radiative cooling calculation must include many
different ionic species, with all the possible lines (Raymond
et al. 1976; MacDonald & Bailey 1981), the exact form of the
cooling function L(T ) depending on the composition of heavy
elements. Detailed calculations for the typical case of solar
abundances show that, at low temperatures, the cooling func-
tion L(T ) increases approximately monotonically with temper-
ature, reaching a maximum,L � 3 ; 10�22 ergs cm3 s�1, at T �
2 ; 105 K (Raymond et al. 1976), where the cooling is domi-
nated by collisional excitation of abundant lithium-like atoms.
Above T � 2 ; 105 K,L(T ) decreases with temperature, except
for some prominent bumps at approximately 2 and 8 MK. Above
T � 3 ; 107 K, thermal bremsstrahlung radiation dominates
and the cooling function turns over again, increasing with tem-
perature. In our simulations, we follow the tabulated form of
the MacDonald & Bailey (1981) cooling curve based on this
solar-abundance recipe.

4.3. Simulations Results for Temperature
and Emission Measure

One of the key results of ud-Doula & Owocki (2002) is
that the overall degree to which the wind is influenced by the
magnetic field depends largely on a single parameter, the mag-
netic confinement parameter, �?, defined by equation (1). For
our MHD simulations of the magnetic wind confinement in �1

Ori C, we use �? ¼ 7:5, based on an assumed stellar radius
R? � 9 R� (see Table 3), Beq ¼ 1

2
Bp�530 G (Donati et al. 2002).

The simulation produces an average mass-loss rate Ṁ � 4 ;
10�7 M� yr�1 (Howarth & Prinja 1989), and terminal wind
speed v1 � 1400 km s�1. Thus, we anticipate that, at least
qualitatively, the simulation results for �1 Ori C should be sim-
ilar to the strong magnetic confinement case (�? ¼ 10) shown in
Figure 9 of ud-Doula & Owocki (2002), allowing, however, for
differences from the inclusion here of a full energy equation
instead of the previous assumption of a strictly isothermal
outflow.

We note that �1 Ori C’s observed terminal wind speed derived
from IUE high-resolution spectra (Howarth & Prinja 1989;
Prinja et al. 1990; Walborn & Nichols 1994) varies significantly,
with v1 � 510 km s�1 at rotational phase 0.1, when the wind
absorption is weak (see Fig. 4, top panel ). �1 Ori C’s wind speed
and mass-loss rate are lower than those of other mid-O stars and
lower than expected from model atmosphere calculations (see
Table 3). In the interpretation of Smith & Fullerton (2005) and
Donati et al. (2002), most of the wind is channeled to themagnetic
equatorial region. Thus, Ṁ and v1 are low near X-ray maximum
(phase 0.0) when the star is viewed magnetic pole-on. It is also
worth noting that Prinja et al. (1990) measure a narrow absorption
line component velocity vNAC � 350 km s�1 at phase 0.1, com-
parable to the Doppler velocity of the X-ray lines discussed in x 5.
In contrast, Stahl et al. (1996) measure a maximum edge velocity
vedge � 2500 km s�1. The net result is that the confinement pa-
rameter for �1 Ori C is in the approximate range 5 � �? � 20. The
low terminal wind speed, v1 � 510 km s�1, measured by Prinja
et al. (1990) is lower than the escape velocity of �1 Ori C,

vesc � 1000 km s�1. Our �? � 7:5 model produces a1470 km s�1

wind above the magnetic pole.
Starting from an initial time t ¼ 0, when the dipole magnetic

field is suddenly introduced into a smooth, steady, spherically
symmetric, CAK wind, our MHD simulation follows the evo-
lution through a total time interval, t ¼ 500 ks, that is many
characteristic wind flow times, R?/v1 � 5 ks. Figure 5 is a snap-
shot of the spatial distribution of log emission measure per unit
volume (top panel ) and log temperature (bottom panel ) at a time,
t ¼ 375 ks, when material is falling back onto the photosphere
along magnetic field lines (solid lines).

 

Fig. 5.—Snapshots from the 500 ks, slow-wind, two-dimensional MHD sim-
ulation of �1 Ori C, with corresponding magnetic field lines superposed. Top:
Logarithm of the emission measure per unit volume, log nenH. Bottom: Logarithm
of temperature, log T . In this snapshot, obtained at simulation time t ¼ 375 ks,
material trapped in closed loops is falling back toward the stellar surface along field
lines, forming a complex ‘‘snakelike’’ pattern. The regions of highest emission
measure in the 1–100MK temperature range occur above and below the magnetic
equator, close to R � 2R?. [See the electronic edition of the Journal for a color
version of this figure.]
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After introduction of the field, the wind stretches open the
field lines in the outer region. In the inner region, the wind is
channeled toward the magnetic equator by the closed field lines.
Within these closed loops, the flow from opposite hemisphere
collides to make strong, X-ray–emitting shocks. At early times,
the shocks are nearly symmetric about the magnetic equatorial
plane, like those predicted in the semianalytic, fixed-field mod-
els of Babel &Montmerle (1997b). Two-dimensional movies12

of �1 Ori C show the evolution of density, temperature, and
wind speed from the initially dipolar configuration.

Figure 5 shows, however, that the self-consistent, dynamical
structure is actually much more complex. This is because once
shocked material cools, its support against gravity by the magnetic
tension along the convex field lines is inherently unstable, leading
to a complex pattern of fall-back along the loop lines down to the
star. As this infalling material collides with the outflowing wind
driven from the base of a given loop line, it forms a spatially com-
plex, time-variable structure, thereby modifying the location and
strength of the X-ray–emitting shocks. When averaged over time,
however, the X-ray emission appears to be symmetric and smooth.

It should be emphasized here that the implied time variability of
shock structure and associated X-ray emission in this simulation
is made somewhat artificial by the assumed two-dimensional,
axisymmetric nature of the model. From a more realistic three-
dimensional model (even without rotation), we expect the com-
plex infall structure would generally become incoherent between
individual loop lines at different azimuths (i.e., at different mag-
netic longitudes). As such, the azimuthally averaged X-ray emis-
sion in a realistic three-dimensional model is likely to be quite
similar to the time-averaged value in the present model. A reliable
determination of the expected residual level of observed X-ray
variability in such wind-confinement models must await future
three-dimensional simulations that account for the key physical
processes setting the lateral coherence scale between loops at dif-
ferent azimuth. But based on the fine scale ofmagnetic structure in
resolved systems such as the solar corona, it seems likely that this
lateral coherence scale may be quite small, implying only a low
level of residual variability in spatially integrated X-ray spectra.

Overall, we thus see that introduction of the initial dipole
magnetic field results in a number of transient discontinuities
that quickly die away. The wind in the polar region stretches the
magnetic field into a nearly radial configuration and remains
quasi-steady and smooth for the rest of the simulation. However,
near the equatorial plane,where the longitudinal component of the
magnetic field,B�, is large, thewind structure is quite complex and
variable. In the closed field region within an Alfvén radius, R �
2R?, the field is nearly perpendicular to the magnetic equatorial
plane and strong enough to contain the wind. The material from
higher latitudes is thusmagnetically channeled toward the equator
and can reach velocities v� � 1000 km s�1.

Such high speeds lead to strong equatorial shocks, with
postshock gas temperatures of tens of millions of degree within
an extended cooling layer. The resulting cool, compressed ma-
terial is then too dense to be supported by radiative driving, and
so falls back onto the surface in a complex ‘‘snakelike’’ pattern
(see Fig. 5). The equatorial material farther away from the
surface gains the radial component of momentum from the
channeled wind, eventually stretching the field lines radially.
Eventually, the fields reconnect, allowing this material to break
out. This dynamical situation provides two natural mechanisms
for emptying the magnetosphere: gravitational infall onto the
stellar surface and break-out at large radii.

A key result here is that the bulk of the shock-heated plasma
in the magnetosphere is moving slowly, implying very little
broadening in the resulting X-ray emission lines. Most of the
X-rays are produced in a relatively small region around R� 2R?

where the density of hot gas is high. Although the infalling and
outflowing components are moving faster, much of the infalling
material is too cool to emit X-rays, while the outflowing plas-
ma’s density is too low to produce very much X-ray emission.

To quantify these temperature and velocity characteristics, we
postprocessed the results of these MHD simulations to produce
an emission measure per unit volume at each two-dimensional
grid point. Then, accounting for viewing geometry and occulta-
tion by the stellar photosphere, emission-line profiles and broad-
band X-ray spectra were generated for a number of viewing
angles. In this procedure we account for the effects of geometry
and occultation on line shapes and fluxes, but we neglect at-
tenuation by the stellar wind and the dense equatorial outflows.
While there is empirical evidence of some excess absorption in
the magnetic equatorial plane (see x 5.3), the effect is much
smaller than would be expected from a dense equatorial cooling
disk, as in the Babel & Montmerle (1997b) model. Our MHD
simulations indicate that an X-ray–absorbing cooling disk never
has a chance to form, because of infall onto the photosphere and
outflow along the magnetic equatorial plane.

Figure 6 plots the volume emission-measure distribution per
log T ¼ 0:1 bin for the snapshot in Figure 5. The MHD simu-
lation is used to compute the emission measure per unit volume
per logarithmic temperature bin, then integrated over three-
dimensional space assuming azimuthal symmetry about the
magnetic dipole axis.

The resulting synthesized X-ray emission lines are quite
narrow, � � 250 km s�1, with symmetric profiles that are only
slightly blueshifted,�100 � vr � 0 km s�1. They are thus quite
distinct from profiles expected from a wind outflow (Kramer
et al. 2003b). The regions of highest emission measure are
located close to the star, R � 2R?; the total volume emission
measure (visible at rotational phase 0.0) exceeds 1056 cm�3; the
eclipse fraction is 20%–30%; and the temperature distribution12 See http://www.bartol.udel.edu/t1oc.

Fig. 6.—Volume emission-measure distribution per log T ¼ 0:1 bin, from
the snapshot in Fig. 5. The MHD simulation is used to compute the emission-
measure per unit volume per logarithmic temperature bin, then integrated over
three-dimensional space assuming azimuthal symmetry about the magnetic
dipole axis. The total simulated volume emission measure in the interval 6:0 �
log T < 8:0 closely matches the total emission measure seen with the HETG in
Table 6. The low-velocity wind (v1 � 1470 km s�1) simulation in Fig. 5 also
produces a slightly cooler distribution of shocks than observed. Full three-
dimensional MHD simulations may be needed to resolve these discrepancies.
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peaks at 20–30 MK, depending on the simulation snapshot.
The resulting narrow-line profiles and hard X-ray spectra are in
marked contrast to observedX-ray properties of supergiant O stars
like � Pup (Kahn et al. 2001; Owocki & Cohen 2001; Ignace
2001; Ignace & Gayley 2002; Kramer et al. 2003a). But they
match quite well the Chandra spectra of �1 Ori C reported in this
paper and of a handful of young OB stars like � Scorpii (Cohen
et al. 2003) and the other components of �Ori (Schulz et al. 2003).

5. X-RAY SPECTRAL DIAGNOSTICS

In the context of the picture of �1 Ori C that we have painted
in the last two sections—a young hot star with a strongwind and
a tilted dipole field that controls a substantial amount of circum-
stellar matter—we now discuss the X-ray spectral diagnostics that
can further elucidate the physical conditions of the circumstellar
matter and constrain the physics of the magnetically channeled
wind. The reduction and analysis of the four Chandra grating
observations have been described in x 2, and here we discuss
the diagnostics associated with (1) the line widths and centroids,
which contain information about plasma dynamics; (2) the line
ratios in the helium-like ions, which are sensitive to the distance
of the X-ray–emitting plasma from the stellar photosphere; and
(3) the abundance, emission-measure, temperature, and radial-
velocity variations with viewing angle, which provide additional
information about the plasma’s geometry.

5.1. Emission Line Widths and Centroids

The Doppler broadening of X-ray emission lines provides
direct information about the dynamics of the hot plasma that is
ubiquitous on early-type stars. For these stars, with fast, dense
radiation-driven winds, X-ray line widths and profiles have
been used to test the general idea that X-rays arise in shock-
heated portions of the outflowing stellar winds, as opposed
to magnetically confined coronal loops, as is the case in cool
stars. Single O supergiants thus far observed with Chandra and
XMM-Newton generally show X-ray emission lines that are
broadened to an extent consistent with the known wind veloc-
ities (Waldron & Cassinelli 2001; Kahn et al. 2001; Cassinelli
et al. 2001), namely, vHWHM � 1000 km s�1, which is roughly
half of v1, as would be expected for an accelerating wind. Very
early B stars, although they also have fast stellar winds, show
much less Doppler broadening (Cohen et al. 2003). Some very
late O stars, such as � Ori (Miller et al. 2002), and unusual
Be stars such as 	 Cas (Smith et al. 2004), show an intermediate
amount of X-ray line broadening. It should be noted that al-
though short-lived bulk plasma flows are seen during individual
flare events on the Sun, cool stars do not show highly Doppler
broadened X-ray emission lines in Chandra or XMM-Newton
grating spectra. It should also be noted that with high enough
S/N, Chandra HETGS data can be used to measure Doppler
broadening of less than 200 km s�1 (Cohen et al. 2003).

In addition to a simple analysis of X-ray emission line widths,
analysis of the actual profile shapes of Doppler-broadened lines
can provide information about the dynamics and spatial distri-
bution of the X-ray–emitting plasma and the nature of the con-
tinuum absorption in the cold wind component (MacFarlane
et al. 1991; Ignace 2001; Owocki & Cohen 2001; Cohen et al.
2002; Feldmeier et al. 2003; Kramer et al. 2003b). These ideas
have been used to fit wind-shock X-ray models to the Chandra
HETGS spectrum of the O4 supergiant � Pup (Kramer et al.
2003a). This work, and qualitative analyses of observations
of other O stars, indicates that wind attenuation of X-rays is
significantly less important than had been assumed in O stars,
but that generally, the wind-shock framework for understand-

ing X-ray emission from early-type stars is sound, at least for
O-type supergiants.
For �1 Ori C, where the magnetic field plays an important

role in controlling the wind dynamics, the specific spherically
symmetric wind models of X-ray emission line profiles men-
tioned above may not be applicable. However, the same prin-
ciples of inverting the observed Doppler line profiles to infer the
wind dynamics and effects of cold-wind absorption and stellar
occultation are, in principle, applicable to �1 Ori C as well, if an
appropriate quantitative model can be found.
In their work on the magnetic field geometry of �1 Ori C,

Donati et al. (2002) calculated several quantitative line profiles
based on the (rigid-field) MCWS model and various assump-
tions about the spatial extent of the magnetosphere, the wind
mass-loss rate, and the optical thickness of the ‘‘cooling disc’’
that is thought to form in the magnetic equator. Donati et al.
(2002) examined the Babel & Montmerle model for five sets of
stellar/disk parameters. Their model 3 produces relatively nar-
row, symmetric X-ray lines (as observed), and requires very
little absorption in the cooling disk. The location of the X-ray
emitter, its emission measure, the X-ray line profiles, and the
time variability can be correctly predicted by accounting for the
interaction between the wind and the magnetic field.
Line width and profile determinations for �1 Ori C have already

been made using the two GTO Chandra grating spectra. Unfortu-
nately, in the literature there are two divergent results based on the
same data. Schulz et al. (2000) claimed that the emission lines in
the HETGS data from the ObsID 3, 31 October 1999, observation
were broad (mean FWHMvelocity of 771 km s�1 with some lines
having FWHMs as large as 2000 km s�1). In a second paper, based
on both ObsID 3 and 4 data sets, Schulz et al. (2003) claimed that
all the lines, with the exception of a few of the longest wavelength
lines, were unresolved in the HETGS spectra. This second paper
mentions a software error and also the improper accounting of line
blends as the cause for the discrepancy. However, as we show
below, the results ofmodest, but nonzero, line broadening reported
in the first paper (Schulz et al. 2000) are actually more accurate.
Schulz et al. (2003) detected 81 lines in the combined HEG/

MEG spectra �1 Ori C from ObsID 3 and 4. Although 82 lines
are listed here in Table 2 of this paper, 35 lines have no flux
errors, signifying that they were blended with other brighter
lines. Hence, Schulz et al. (2003) detect more lines, but at lower
S/N. Generally, Schulz et al. (2003) find line fluxes comparable
to those in Table 2, because ObsID 3 and 4 were obtained at
intermediate phases, and the combined HEG and MEG spectra
presented here are the sum of spectra obtained at low, inter-
mediate, and high phases.
With the detailed analysis we carried out and described in x 2,

we find finite, but not large, line widths, as indicated in Table 2.
The lines are clearly resolved, as we show in Figures 7 and 8, in
which two strong lines, one in the HEG and one in the MEG, are
compared to intrinsically narrow models, to Doppler-broadened
models, and also to data from a late-type star with narrow emis-
sion lines.
We took a significant amount of care in deriving the line

widths, fitting all lines in a given complex and carefully ac-
counting for continuum emission. We fit each of the four ob-
servations separately, but generally find consistent widths from
observation to observation, as we discuss below. In Figure 9,
the Doppler width vD of each line (open circles) is plotted versus
the peak log T of that line. The rms turbulent velocities � are
plotted as filled diamonds. The Doppler widths are slightly
higher than the rms velocities because the Doppler width includes
the effects of thermal broadening. The velocities do not appear to
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depend on temperature; however, there are two anomalous line
profiles. The O viii Ly� at 18.97 8 (� � 850 km s�1) and Fe xvii
at 15.018 (� � 700 km s�1) are substantially broader than any of
the other lines. Excluding these two lines, we find a mean vD ¼
351� 72 kms�1 and amean � ¼ 345 � 88 kms�1. BecauseO viii

and Fe xvii tend to form at lower temperatures (T � 5 ; 106),
the two broader lines could represent cooler plasma formed by
the standard wind instability process. Approximately 80% of the
total emission measure is in the hotter 30 MK plasma. For lines
formed in this hotter plasma, the Doppler broadening is sub-
stantially lower than the wind velocity. Themodeled line widths
from the MHD simulations, however, are quantitatively con-
sistent with the results derived from the data.

The line widths we derive from the data are relatively, but not
totally, narrow, and they are also approximately constant as a
function of rotational phase and magnetic field viewing angle.

Fig. 7.—Mg Ly� line in the combined ChandraHEG spectrum from all four
observations (solid histogram, both panels). A model with only thermal
broadening (vth ¼ 104 km s�1; dashed line, top panel ) is much narrower than
the observed profile. A Gaussian line model with thermal and turbulent
broadening due to bulk motion (� ¼ 328 km s�1; dashed line, bottom panel )
provides a better fit to the data.

Fig. 8.—Ne Ly� line in the combined ChandraMEG spectrum from all four
observations of �1 Ori C (solid histogram) compared to the same line seen in the
MEG spectrum of the active young K-type dwarf, AB Doradus (dash-dotted
histogram). A delta function convolved with the MEG instrumental response
(dashed line) is also shown for comparison. The �1 Ori C line is clearly broader
than both the narrow line or the AB Dor line.

Fig. 9.—Line widths for the strongest lines in the Chandra spectra plotted
against the temperature of peak line emissivity, taken from APED. The open
circles represent the Doppler width as measured by SHERPA. The filled dia-
monds represent the rms velocity as measured by ISIS. The mean rms velocity
and standard deviations of these lines are indicated by the horizontal lines. Note
that two of the lines formed in the coolest plasma are significantly broader than
the mean, but most of the lines have nonthermal line widths of a 250–450 km s�1.

Fig. 10.—Line widths for the strongest lines in the Chandra spectra (open
circles) at each of our four observations. The filled circles are the mean mea-
sured line widths and the error bars are the standard deviations of the mean
values. The gray diamonds are the theoretical predictions based on the MHD
simulations. The velocity widths plotted here are the Doppler width compo-
nents, vD, as described in x 2. Note that the observed lines are somewhat broader
than predicted by the MHD simulations, but substantially less broad than ex-
pected from line-driven shocks in the wind.
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We show these results in Figure 10. This is somewhat surprising
in the context of the MCWS model as elucidated by Babel &
Montmerle (1997b) and Donati et al. (2002), in which the pole-
on viewing angle is expected to showmore Doppler broadening,
as the shock-heated plasma should be moving toward the mag-
netic equatorial plane along the observer’s line of sight. How-
ever, as we show in x 4, the full numerical simulations predict
nonthermal line widths of 100–250 km s�1. In Figure 10 we
show the Doppler velocity from a simulation with a stable mag-
netosphere (cf. Fig. 5) as gray filled diamonds.

Finally, the dynamics of the shock-heated plasma in theMCWS
model might be expected to lead to observed line centroid shifts
with phase or viewing angle. This would be caused by occultation
of the far side of the magnetosphere by the star or by absorption in
the cooling disk (see Donati et al. 2002).

As predicted by the MHD simulations, the data show line
centroids very close to zero velocity at all viewing angles. Note,
however, that the global fits discussed in x 5.3 show evidence
for a small viewing-angle dependence.

5.2. Helium-like Forbidden-to-Intercombination Line Ratios

The ratio of forbidden-to-intercombination ( f =i) line strength
in helium-like ions can be used to measure the electron density
of the X-ray–emitting plasma and/or its distance from a source
of far-UV radiation, such as the photosphere of a hot star
(Blumenthal et al. 1972). Figure 11 is an energy-level diagram
for S xv similar to the one for O vii first published by Gabriel &
Jordan (1969). It shows the energy levels (eV) and transition
wavelengths (8) from APED of the resonance (1P1 !1S0),
intercombination (3P2;1 ! 1S0), and forbidden (3S1 ! 1S0)
lines. Aside from the usual ground-state collisional excitations
(solid lines) and radiative decays (dashed lines), the metastable
3S1 state can be depopulated by collisional and/or photoexcitation
to the 3P states. In late-type stars, the f /i ratios of low-Z ions such
as N vi and O vii are sensitive to changes in electron density near
or above certain critical densities (typically in the 1012 cm�3

regime). Higher Z ions have higher critical electron densities
usually not seen in normal (nondegenerate) stars. Kahn et al.
(2001) have used the f /i ratios of N vi, O vii, and Ne ix and the
radial dependence of the incident UV flux to determine that most
of the emergentX-rays from theO4 supergiant � Pupwere formed
in the far wind, consistent with radiatively driven wind shocks.
In our observations of �1 Ori C, the He-like lines of Fe xxv,

Ca xix, Ar xvii, S xv, Si xiii, and Mg xi were detected at all
phases. However, accurate f /i ratios cannot be determined for
all ions. The resonance and intercombination lines of Fe xxv at
1.8508 and Ca xix at 3.1778 are blended in the HEG, and weak
or nonexistent in the MEG. Similarly, Ne ix at 13.447 8 and
O vii at 21.602 8 are weak or nonexistent in the HEG.
Derived forbidden-to-intercombination ( f /i) and forbidden+

intercombination-to-resonance ( f þ i)/r ratios are listed in
Table 4. The Mg xi, Ne ix, and O vii forbidden lines are com-
pletely suppressed via far-UV photoexcitation of the 3S1 upper
level, while the forbidden lines of Si xiii, S xv, and Ar xvii are
partially suppressed. Figure 12 shows the He-like line com-
plexes of Ar xvii, S xv, Si xiii, and Mg xi with their best-fit
models. The forbidden lines of O vii and Ne ix (not shown in
Fig. 12) are completely suppressed.
The Ar xvii forbidden line at 3.994 8 is blended with S xvi

Ly� at 3.990 and 3.992 8 and S xv at 3.998 8. Based on the
ISIS abundances and emission measures (see x 5.3 below),
APED predicts that only 26% of the HEG line flux comes from
the Ar xvii f line. In the above case, the f /i ratio is highly un-
certain and strongly model dependent, making the use of this
line ratio problematic. The Si xiii f line at 6.740 8 is blended
with the Mg xii Ly	 doublet at 6.738 8. Similarly, we esti-
mate that the Mg xii doublet’s flux is approximately 11:8 ;
10�6 photons cm�2 s�1, approximately 38% of the flux at
6.740 8. Assigning the remaining flux to the Si xiii f line re-
sults in f /i ¼ 0:98; we have assigned a large 30% uncertainty
in Table 4 because of the blending problem.

TABLE 4

He-like Line Diagnostics

Ion

3P2 !3S1
(8)

3P1 !3S1
(8)

r

(10�6 photons cm�2 s�1)

i

(10�6 photons cm�2 s�1)

f

(10�6 photons cm�2 s�1)

R

( f /i) �R

G

[ f þ ið Þ/r] �G

Ar xvii ......... 560 640 13.02 6.84 12.37 1.81 0.37 1.47 0.36

S xv ............. 673 783 50.53 15.93 21.92 1.38 0.22 0.75 0.08

Si xiii ........... 815 865 61.40 19.44 18.98 0.98 0.30 0.63 0.07

Mg xi........... 977 1034 28.89 17.37 1.36 0.08 0.07 0.65 0.07

Ne ix............ 1248 1273 33.29 26.37 0.41 0.02 0.11 0.83 0.19

O vii ............ 1624 1638 16.98 14.42 0.00 0.00 0.20 0.85 0.71

Fig. 11.—Energy-level diagram for S xv, based on the O vii diagram of
Gabriel & Jordan (1969). Collisional excitations (C ) are shown as upward
pointing solid lines; radiative decays are shown as downward pointing dashed
lines; photoexcitations are shown as upward pointing dashed lines. APED level
energies and observed transition wavelengths are also shown. Electrons are
excited out of the metastable 3S1 state by collisions at high density and by
radiation close to a hot photosphere.
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This leaves us with f /i measurements for Mg xi, S xv, and
Si xiii. We take the Mg forbidden line to be undetected (the fit
result in Table 4 shows that it is just barely detected at the 1 �
level). The sulfur f /i value is quite well constrained, however,
and lies somewhere between the two limits (generally referred to
as ‘‘high-density’’ and ‘‘low-density,’’ reflecting the traditional
use of this ratio as a density diagnostic in purely collisional
plasmas).

Of course, the photospheric emergent fluxes must be known
at the relevant UV wavelengths for the f /i ratio to determine the
location of the X-ray–emitting plasma. The Mg xi, Si xiii, and
S xv photoexcitation wavelengths are listed in Table 4. The
1034 8 flux has been measured using archival Copernicus
spectra. For the fluxes short of the Lyman limit at 912 8, where
we have no data and for which non-LTEmodel atmospheres and
synthetic spectra have not been published, we scaled the flux
from a 45,000 K blackbody (the hot model in Table 3). We
computed the f /i ratios using the PrismSPECT non-LTE exci-
tation kinematics code (MacFarlane et al. 2003). For each line
complex, we set up a model atom with several dozen levels for
each ion using oscillator strengths and transition rates custom-
computed using Hartree-Fock and distorted-wave methodolo-
gies. The resulting values were checked against data from the
literature. We include collisional and radiative coupling among

most levels in the model atom, and specifically include pho-
toexcitation between the 3S1 and 3P levels driven by photo-
spheric radiation.

The results of this modeling for Mg xi and S xv are shown
in Figure 13, where the solid lines represent f /i as a function
of electron density for a range of radii from 1 to 200 R?. The
dashed line in Figure 13 (top) is the Mg xi upper limit, indi-
cating an upper limit to the formation radius R � 1:7R?. The
dashed lines in Figure 13 are the S xv 1 � upper and lower
bounds, indicating a formation radius in the range 1:2R? � R �
1:5R?. The resulting bounds from Si xiii are consistent with S xv.
Of course, it is a simplification to assume that all of the plasma
(even for a given element or ion stage) is at a single radius. The
formation radii we have derived should thus be thought of as an
emission-measure–weighted mean. In any case, it is clear that the
hot plasma in the circumstellar environment of �1 Ori C is quite
close to the photosphere. We note that there is no variation in the
average formation radius among the four separate phase obser-
vations. We also note that these results are comparable to those
found by Schulz et al. (2003) based on the earlier two data sets.

5.3. Emission-Measure and Abundance Variability

There are several additional diagnostics that involve analysis
of not the properties of single lines, but the X-ray spectrum as a

fig. 12afig. 12bfig. 12cfig. 12dFig. 12.—Ar xvii, S xv, Si xiii, and Mg xi He-like line complexes. In each panel, the data (solid histogram) and model (gray dashed line) of the resonance (r),
intercombination (i), and forbidden ( f ) lines are shown. Note that as atomic number increases from Z ¼ 12 (Mg xi) to Z ¼ 18 (Ar xvii), the relative strength of the
forbidden line to the intercombination line increases. The Si xiii f line is blended with a Mg xii line. The other detected He-like lines were not used for the diagnostic
analysis: Ca xix was too weak, and the Fe xxv f and i lines were not resolved.

Fig. 12a Fig. 12b

Fig. 12c Fig. 12d
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whole. The global thermal model fittingwith ISIS described in x 2
yields abundance and emission-measure information, while the
line flux values taken as an ensemble can be analyzed for phase or
viewing-angle dependence. Detailed descriptions of these analy-
ses have already been presented x 2, so here we simply present the
results.

The elemental abundances derived from the two different
fitting methods are reported in Table 5. Most elemental abun-

dances do not deviate significantly from solar, although Fe is
well below solar and several intermediate atomic number ele-
ments are slightly above solar.
The HEG/MEG spectra for each observation were fit with a

variable-abundance, two-temperature ISIS plasma model with
radial velocity and turbulent (rms) velocity as free parameters
(see Table 6), with a single column density parameter, NH. We
tried fitting the individual and combined spectra with 2, 5, and
21 temperature APEC models with solar and nonsolar abun-
dances. No solar-abundance model can adequately fit the con-
tinuum and emission lines. The 5 and 21 temperature component
models do not provide appreciably better fits than the two-
temperature nonsolar abundance model. Although plasma at a
number of temperatures may be present, it is not possible to accu-
rately fit somany free parameters withmoderate-S/NHETG data.
Schulz et al. (2003) used a six-temperature, variable abun-

dance APEC plasma model to fit the combined HEG/MEG
spectra from ObsID 3 and 4. They find NH � 5 ; 1021 cm�2,
subsolar Fe, Ni, O, and Ne, and approximately solar abun-
dances of other elements, again consistent with our results in
Table 6. Their Figure 7, however, suggests a phase dependence
in the six-temperature emission-measure distribution, which we
cannot confirm. We point out, however, that the 1 � error en-
velope in their emission-measure distributions overlap signifi-
cantly. The emission measures in Table 6 for phases 0.38 and
0.84 appear to fit within both EM envelopes in Figure 7 of Schulz
et al. (2003).
The visible emission measure decreases by 36% from X-ray

maximum to minimum, suggesting that a substantial fraction of
the X-ray–emitting region is occulted by the star at high view-
ing angles. Comparison between the observed data and the MHD
simulations show that the agreement is quite good, in terms of
both the overall volume emission measure and its temperature
distribution.
As has previously been shown (Gagné et al. 1997; Babel &

Montmerle 1997b; Donati et al. 2002), the phase dependence
of the X-ray spectrum provides information about the extent
and location of the X-ray emission and absorption in the wind
and disk. There are no large, systematic spectral variations at
the four phases observed with Chandra. For example, the soft
X-ray portion of the MEG is not more absorbed than the hard
X-ray portion, suggesting that the variability is not primarily
caused by absorption in the disk or by a polar wind. Rather, it
appears that most of the variability is caused by occultation of
the X-ray emitter by the stellar photosphere as the magnetically
confined region rotates every 15.4 days.

TABLE 5

Average Elemental Abundances for �1 Ori C

Global Fit Line Fit

Element Abundance � Abundance � Lines Used for Fit

O...................... 0.76 0.04 0.76 0.08 O viii k18.98
Ne.................... 0.69 0.02 1.04 0.05 Ne x k12.13
Mg................... 0.81 0.02 0.94 0.02 Mg xii k8.42
Si ..................... 1.18 0.02 1.11 0.02 Si xiv k6.18
S ...................... 1.40 0.05 1.22 0.06 S xvi k4.73
Ar .................... 1.28 0.13 1.48 0.17 Ar xvii k3.95
Ca .................... 1.12 0.18 1.72 0.19 Ca xix k3.18
Fe..................... 0.60 0.01 0.62 0.06 Fe xvii kk15.01, 16.78; Fe xix k15.01; Fe xx kk15.00, 15.02; Fe xxii k11.77;

Fe xxiii kk10.98, 11.02, 11.74; Fe xxiv kk10.62, 11.03, 11.18; Fe xxv k1.85

Note.—Abundances relative to solar (Anders & Grevesse 1989). The combined HEG and MEG first-order spectra were fit using a multitemperature APED
plasma model in ISIS.

 
 

Fig. 13.—He-like f /i ratio vs. ne at various radii from 1R?–200R?, assuming a
45,000 K photosphere, for Mg xi (top) and S xv (bottom). The measured f /i
upper and lower bounds from Table 4 are shown as dashed lines. The Mg xi,
Si xiii, and S xv suggest a formation radius 1:2R? � R � 1:5R?.
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That said, there does a appear to be a small increase in col-
umn density when the disk is viewed nearly edge-on. Figure 14
shows the ISIS parameters, NH (top curve, right axis) and radial
velocity (bottom curve, left axis), as a function of viewing
angle. The excess column density, NH � 5 ; 1020 cm�2, would
arise as a result of increased outflow in the magnetic equatorial
plane. Because increased column density and increased temper-
ature harden the predicted X-ray spectrum in somewhat similar
ways, we consider the column density variability as a tentative
result. We point out that X-ray absorption toward �1 Ori C occurs
in the ISM, in the neutral lid of the Orion Nebula, in the ionized
cavity, and in the stellar wind. The Wisconsin absorption model
for cold interstellar gas yields a single column density parameter,
which does not take into account the ionization fraction, tem-
perature, and abundance of these absorption components.

The measured radial velocities at viewing angles 4� (pole-on),
39�, 80�, and 87� (edge-on) were�75 � 10,�66þ12

�9 , 19þ19
�18, and

93þ16
�13 km s�1, respectively. Systematic line shifts were not de-

tected in individual line complexes (see x 5.1) because the un-
certainty in the centroid velocity of a single line is higher than its
uncertainty based on a large number of lines. For instance, the 1 �
uncertainty at eachObsID in the line centroid of Fe xvii k15.014 is
approximately 50 km s�1.

The simulations predict no significant blueshifts or redshifts
at any viewing angle. As a result, the �75 km s�1 blueshift at

low viewing angle and the +93 km s�1 redshift at high viewing
angle seen in Figure 11, if real, may lead to further improve-
ments of the model. The two-dimensional MHD simulations
show that the hot plasma is constantly moving, sometimes fall-
ing back to the photosphere in one hemisphere or the other, at
other times expanding outward in the magnetic equatorial plane
following reconnection events. Because the four Chandra obser-
vations were obtained months or years apart, the radial velocity
variations may reflect the stochastic nature of the X-ray produc-
tion mechanism or persistent flows of shock-heated plasma.

Although small, the X-ray line shifts nicely match the C iv,
N v, and H� emission components discussed by Smith &
Fullerton (2005). In this picture, material falling back onto the
photosphere along closed magnetic field lines produces red-
shifted emission when viewed edge-on. The blueshifted X-ray
and H� emission seen at low viewing angles (pole-on, � ¼ 0)
would be produced by (1) the same infalling plasma viewed
from an orthogonal viewing angle and/or (2) material in the
outflowing wind. Smith & Fullerton (2005) argue that a polar
outflow probably cannot produce the observed levels of H� and
He ii k4686 emission, thereby preferring the infall scenario.

If pole-on blueshifts in the X-ray lines are persistent, this sug-
gests asymmetric infall toward the north (near) magnetic pole.
Such blueshifts could be caused by an off-centered oblique
dipole. The blueshifts might also be caused by absorption of the
red emission in the far hemisphere by the cooler postshock gas.
However, this would produce weaker X-rays at pole-on phases.
Since stronger X-ray emission is observed at pole-on phases,
asymmetric infall provides a better explanation for the blue-
shifted H� and X-ray line emission. Repeated observations at
pole-on and edge-on phases are needed to confirm this result.

6. DISCUSSION

The high-resolution X-ray spectroscopy covering the full range
of magnetospheric viewing angles adds a significant amount of
new information to our understanding of the high-energy pro-
cesses in the circumstellar environment of �1 Ori C, especially
when interpreted in conjunction with data from other wave-
length regions and our newMHD numerical simulations. As the
simplified MCWS modeling (Babel & Montmerle 1997b;
Donati et al. 2002) indicated and our detailed MHD simulations
confirmed, the magnetically channeled wind model can pro-
duce the right amount of X-rays and roughly the observed
temperature distribution in the X-ray–emitting plasma. The two
new Chandra observations we report on in this paper reinforce
the global spectral information already gleaned from the two
GTO observations. In addition, the better phase coverage now
shows that the modulation of the X-rays is quite gray, indicating

TABLE 6

Global ISIS Fit Parameters and 90% Confidence Limits

Parameter

ObsID 2567

(� = 0.01, � = 4�)

ObsID 3

(� = 0.84, � = 40�)

ObsID 4

(� = 0.38, � = 80�)

ObsID 2568

(� = 0.47, � = 87�) Average

LX
a (1033 ergs s�1)........... 1.13 � 0.06 1.00 � 0.05 0.77 � 0.04 0.75 � 0.04 1.03 � 0.05

NH (1021 cm�2) ................ 4:51þ0:17
�0:17 4:54þ0:19

�0:17 4:58þ0:34
�0:29 4:93þ0:27

�0:23 4:61þ0:13
�0:11

EM1 (10
54 cm�3) ............. 14:3þ1:1

�0:9 13:6þ0:9
�0:9 9:7þ1:0

�1:2 10:3þ0:9
�0:9 13:7þ0:6

�0:5

T1 (10
6 K) ........................ 8:4þ0:2

�0:1 8:4þ0:2
�0:1 8:4þ0:3

�0:2 8:5þ0:2
�0:2 8:5þ0:1

�0:1

EM2 (10
54 cm�3) ............. 66:2þ1:0

�1:0 56:5þ0:9
�0:8 43:3þ1:1

�1:1 41:3þ0:8
�0:9 58:5þ0:6

�0:6

T2 (10
6 K) ........................ 29:2þ0:4

�0:5 30:1þ0:5
�0:5 33:6þ1:2

�1:2 33:6þ1:0
�1:0 32:6þ0:5

�0:5

� (km s�1)........................ 303þ21
�20 333þ21

�25 343þ35
�34 366þ33

�29 348þ16
�14

vr (km s�1)....................... �75þ10
�10 �66þ12

�9 19þ19
�18 93þ16

�13 �31þ10
�5

a LX is the unabsorbed 0.5–10 keV (1.25–25 8) X-ray luminosity assuming d ¼ 450 pc.

Fig. 14.—HEG/MEG spectra, showing slight changes in radial velocity (left
axis, filled circles) and column density (right axis, open circles) from obser-
vation to observation. At low viewing angles (pole-on), the X-ray lines are
slightly blueshifted; at high viewing angles (disk-on), the lines are redshifted,
with a hint of excess absorption from ionized gas in the disk. The increased
absorption may indicate outflowing wind material in the magnetic equatorial
plane. The redshifts and blueshifts may indicate obliquely infalling material
seen from various viewing angles.
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that occultation by the star at phases when our view of the system
is in the magnetic equatorial plane is the primary cause of the
overall X-ray variability. Incidentally, the fact that the reduction
in the flux is maximal at � ¼ 0:5 confirms the reassessment of
field geometry by Donati et al. (2002).

The fractional decrease in the observed flux of roughly
35%, interpreted in the context of occultation, indicates that
the X-ray–emitting plasma is quite close to the photosphere:
1:2R? � R � 1:4R?. This result is completely consistent with
the observed Mg xi, Si xiii, and S xv f /i values, which together
indicate 1:2R? � R � 1:5R?, i.e., between 0.2 and 0.5 stellar
radii above the photosphere. The MHD simulations we have
performed also show the bulk of the very hot emission measure
to be, on average, within 2R?.

We see evidence for slightly enhanced attenuation at large
viewing angles (nearly edge-on) as a result of wind material
channeled into the magnetic equatorial plane. We should point
out that the infall (in the closed-field region) and outflow (in the
open-field region) means that a dense, X-ray absorbing, cooling
disk does not form in the equatorial plane.

The X-ray emission lines seen in the Chandra spectra are well
resolved, but relatively narrow, and show small (<100 km s�1)
centroid shifts. Although the two-dimensional MHD simulations
indicate little or no line shifts on average, the small observed shifts
(also seen in H�) may reflect the stochastic nature of the infall
onto the star. If the blueshifts at pole-on phases are persistent, they
may indicate an asymmetry in the magnetic/wind geometry.

The line widths in the simulations are even narrower than
those seen in the data. But this is, perhaps, not too surprising, as
the simulations do not include the deshadowing instability that
can lead to shock heating in the bulk wind. Some radiatively
driven X-ray production in the cooler (T � 6 ; 106 K) wind
shocks was suggested by Schulz et al. (2003) and may explain
the larger widths of the Fe xvii and O viii lines. Furthermore,
fully three-dimensional simulations may reveal additional tur-
bulence or other bulk motions.

7. CONCLUSIONS

The magnetically channeled wind shock model for magnetized
hot stars with strong line-driven winds provides excellent agree-
ment with the diagnostics from our phase-resolved Chandra
spectroscopy of �1 Ori C. The modest line widths are consistent
with the predictions of our MHD simulations. The X-ray light
curve and He-like f /i values indicate that the bulk of the X-ray–
emitting plasma is located at approximately 1.5R?, very close to

the photosphere, which is also consistent with the MHD simu-
lations of the MCWS mechanism. The simulations also correctly
predict the temperature and total luminosity of theX-ray–emitting
plasma. We emphasize that the only inputs to the MHD simula-
tions were the magnetic field strength, effective temperature, ra-
dius, and mass-loss rate of �1 Ori C, all of which are fairly well
constrained by observation.
Although the original explorations of theMCWSmechanism

indicated that there might be significant viewing angle depen-
dencies in some of these diagnostics, the numerical simulations
by and large do not predict them, and they are generally not
seen in the data. Spatial stratification of the very hottest plasma
might explain the slight wavelength dependence of the viewing
angle variability of the X-ray flux.
The new MHD simulations we present for �1 Ori C are sim-

ilar to the original calculations by ud-Doula & Owocki (2002),
but the more accurate treatment of the energy equation makes
for some modest changes, and allows for a direct prediction of
its X-ray emission properties. Future, fully three-dimensional
simulations might show even better agreement with the data if
different longitudinal sectors of the magnetosphere exhibit inde-
pendent dynamics. But the addition of rotation into the dynamical
equations of motion probably is not important for this star and
seems to be unnecessary for reproducing the observations.
The red and bluewings of the C iv andN vUVresonance-lines,

the optical H i Balmer and He ii lines, and small centroid velocity
shifts in the X-ray lines may point to more complicated, episodic
infall and/or mass-loss.
As was pointed out by Schulz et al. (2003), �1 Ori C is one of

many early-type stars in OB associations with hard X-ray
spectra. The MCWS model may be fruitfully applied to � Sco,
and other young, early-type stars that show relatively narrow
X-ray emission lines, hard X-ray spectra, and time variability.
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