X-ray Spectroscopy of O Supergiant Winds: Shock Physics, Clumping, and Mass-Loss Rates

David Cohen Department of Physics & Astronomy Swarthmore College

Maurice Leutenegger (GSFC), Véronique Petit, Stan Owocki, & Dylan Kee (Delaware), Jon Sundqvist (Delaware and Munich), Marc Gagné (West Chester), Asif ud-Doula (Penn St. Worthington-Scranton) Emma Wollman (Caltech, Swarthmore '09), Jake Neely (Swarthmore '13), Zack Li (Swarthmore '16), Kelley Langhans (Swarthmore '16)

Talk Outline

Context of O star X-ray emission: wind shocks (focus on effectively single O supergiants)

I. X-ray constraints on the shocked wind plasma
2. X-ray absorption as a mass-loss diagnostic
3. Clumping diagnostics from X-rays + Hα
Radiative vs. Adiabatic shocks

Open questions: very dense winds (WR stars); low density winds (B stars); magnetic OB stars O stars are strong sources of soft X-ray emission thermal emission from hot (T > 10⁶ K) plasma

HD 93129A (O2 If) is the brightest X-ray source in this cluster $L_x \sim 10^{33}$ red < 1 keV, green 1 - 2 keV, blue > 2 keV

Tr 14 in Carina: Chandra

X-ray luminosity is correlated with bolometric luminosity $Lx \sim 10^{-7}L_{bol}$ but with a lot of scatter

T.W. Berghöfer et al.: X-ray properties of bright OB-type stars detected in the ROSAT all-sky survey

Fig. 4. X-ray luminosities L_x plotted versus bolometric luminosities L_{Bol} ; solid lines represent regression lines for $L_{Bol} < 10^{38} erg \, s^{-1}$ and $L_{Bol} > 10^{38} erg \, s^{-1}$, whereas the dashed line shows $L_x = 10^{-7} \times L_{Bol}$, grey bars at the left side show typical ranges for the X-ray luminosity of Algol-type systems, pre-main sequence stars (PMS), and our Sun.

171

$Lx \sim 10^{-7}L_{bol}$ but with a lot of scatter

Chandra Carina Complex Project: Nazé et al. 2011

$Lx \sim 10^{-7}L_{bol}$ but with a lot of scatter

Chandra Carina Complex Project: Nazé et al. 2011

OB star winds are powerful

Hallmark of OB star winds

UV absorption in resonance lines of metal ions (e.g. C+3)

Velocity (km/s)

Ultraviolet spectrum showing wind feature from C⁺³

ζPup (O4 supergiant): M ~ few 10⁻⁶ M_{sun}/yr

UV spectrum: C IV 1548, 1551 Å

Velocity (km/s)

X-rays are evidence of power being dissipated in the stellar wind

kinetic power of the wind = $1/2 \text{ Mv}_{\infty}^2$ (~10⁻³ L_{bol})

The wind kinetic power is typically 10⁴ times larger than the observed $L_{\rm x}$

Some process - which doesn't have to be very efficient - converts a small fraction of this kinetic power to heat.

The observed X-rays are the thermal radiation from this hot stellar wind plasma.

X-rays are evidence of power being dissipated in the stellar wind

Line Deshadowing Instability (LDI), leads to shock-heating of the wind: $T \sim 10^6 (\Delta v_{shock}/300 \text{ km/s})^2$

simulation by J. Sundqvist

Less than 1% of the mass of the wind is emitting X-rays

Less than 1% of the mass of the wind is emitting X-rays

>99% of the wind is cold and X-ray absorbing

I-D simulations: spherically symmetric

2-D radiation-hydro simulations clumps break up to the grid scale

).0	0.5	1.0	1.5	2.0
		$\rho/\rho_{t=0}$		

2-D radiation-hydro simulations

Keep in mind: the bulk of the wind mass is in these dense, cold ($\sim T_{eff}$) clumps. They are the site of most of the UV wind absorption observed from metals and also of the hydrogen recombination that leads to the observed H-alpha emission.

Dessart & Owocki 2003

Thermal properties of the plasma

Heating from shocks combined with cooling - which may be primarily adiabatic or radiative

Wojdowski & Schulz 2005

X-ray plasma temperature in O stars is quite low (few million K)

...compared to low-mass stars, for example, or some *magnetic* massive stars

Thermal properties of the plasma

Heating from shocks combined with cooling - which may be primarily adiabatic or radiative

numerical LDI simulations are not yet mature enough to make strong predictions about X-ray temperatures X-ray emission process thermal emission from collisional plasma

X-ray line emission spectroscopy Provides important information via Doppler-broadened profiles

starfish, in situ, at the Monterey, California Aquarium (photo: D. Cohen)

Chandra grating (HETGS/MEG) spectra

1.0

0.5 0.0

Wavelength (Å)

Capella (G5 III)

emission lines + bremsstrahlung + recombination

ζ Pup (O4 If)

Chandra grating (HETGS/MEG) spectra

typical temperatures $T \sim \text{few I0}^6 \text{ K}$ (late-type stellar coronae tend to be hotter) ζPup (O4 If)

ζ Pup (O4 lf)

ζ Pup (O4 lf)

Capella (G5 III)

cool stars: narrow lines =
magnetically confined
coronal plasma

hot stars: broad lines = outflowing, shock-heated wind plasma

lines are asymmetric

The key is X-ray absorption

Absorption in the cold wind component due to inner-shell photoionization

Absorption in the cold wind component

due to inner-shell photoionization

inner-shell photoionization E E L.P. ~ I wev L

Absorption in the cold wind component

Line Asymmetry

Line Asymmetry

Line Asymmetry

2 representative points in the wind that emit X-rays

extra absorption for redshifted photons from the rear hemisphere

10

5

absorption along the ray

-10

-5

................

 \triangleleft

Wind Profile Model

Line profile shapes

key parameters: $R_o \& T_\star$

$$v = v_{\infty} (1 - r/R_{\star})^{\beta}$$

$$j \sim \rho^2$$
 for $r/R_* > R_o$,

= 0 otherwise

$$\tau = \tau_* \int_{z}^{\infty} \frac{R_* dz'}{r'^2 (1 - \frac{R_*}{r'})^{\beta}}$$

Owocki & Cohen 2001

Fit the model to data

ζ Pup: Chandra

Distribution of R_o values for ζ Pup

Quantifying the wind optical depth opacity of the cold wind component (due to wind photoionization of C, N, O, Ne, Fe)

 ${\mathcal T}_*$

wind mass-loss rate

 $\dot{M} = 4\pi r^2 v \rho$

stellar radius

кМ

 $4\pi R_*v$

wind terminal velocity

soft X-ray wind opacity

note: absorption arises in the dominant, cool wind component

ζ Pup Chandra: three emission lines

Mg Lyα: 8.42 Å

Ne Lyα: I2.I3 Å

Ο Lyα: 18.97 Å

Τ∗ ~ Ι

T_{*} ~ 2

Recall:

$$\tau_* \equiv \frac{\kappa \dot{M}}{4\pi R_* v_\infty}$$

Results from the 3 line fits shown previously

Fits to 16 lines in the Chandra spectrum of ζ Pup

Fits to 16 lines in the Chandra spectrum of ζ Pup

Fits to 16 lines in the Chandra spectrum of ζ Pup

${\bf \dot{M}}$ becomes the free parameter of the **fit** to the $T_*(\lambda)$ trend

 ${\bf \dot{M}}$ becomes the free parameter of the **fit** to the $T_*(\lambda)$ trend

2-D radiation-hydro simulations clumping

2-D radiation-hydro simulations clumping

clumping factor ~10 to ~20 (Najarro et al. 2011)

Fig. 18. Radial stratification of the clumping factor, f_{cl} , for ζ Pup. Black solid: clumping law derived from our model fits. Red solid: Theoretical predictions by Runacres & Owocki (2002) from hydrodynamical models, with self-excited line driven instability. Dashed: Average clumping factors derived by Puls et al. (2006) assuming an outer wind matching the theoretical predictions. Magenta solid: run of the velocity field in units of 100 km s⁻¹. See also Sect. 4.

X-ray line profile based mass-loss rate: implications for clumping

basic definition: $f_{cl} \equiv \langle \rho^2 \rangle / \langle \rho \rangle^2$

clumping factor

ignoring clumping will cause you to overestimate the mass-loss rate

X-ray line profile based mass-loss rate: implications for clumping

> basic definition: $f_{cl} \equiv \langle \rho^2 \rangle / \langle \rho \rangle^2$ clumping factor

from density-squared diagnostics like Hα, IR & radio free-free from (column) density diagnostic like T_{*} from X-ray profiles X-ray line profile based mass-loss rate: implications for clumping

clumping factor
$$f_{cl} \equiv \langle \dot{M}_{H\alpha}^2 \rangle / \langle \dot{M}_{X-ray}^2 \rangle$$

$f_{cl} \sim 20$ for ζ Pup

but see Puls et al. 2006: radial variation of clumping factor

clumping factor ~10 to ~20 (Najarro et al. 2011)

Fig. 18. Radial stratification of the clumping factor, f_{cl} , for ζ Pup. Black solid: clumping law derived from our model fits. Red solid: Theoretical predictions by Runacres & Owocki (2002) from hydrodynamical models, with self-excited line driven instability. Dashed: Average clumping factors derived by Puls et al. (2006) assuming an outer wind matching the theoretical predictions. Magenta solid: run of the velocity field in units of 100 km s⁻¹. See also Sect. 4.

Latest numerical simulations of the LDI

include limb darkening and photospheric soundwave perturbations

and generate more structure near the wind base

Figure 4. Inner wind time evolutions of a simulation without limb darkening and photospheric perturbations (left) and one including both effects (right).

HD 93129A

Tr 14: Chandra

Chandra grating spectra of HD 93129A

Figure 3. The extracted MEG (top) and HEG (bottom) spectra from the seven coadded pointings. Note the different y-axis scales on the two figures. The wavelengths of lines expected to be present in normal O star *Chandra* spectra are indicated by the vertical dotted lines.

Strong stellar wind: traditional diagnostics UV

 $\dot{M} = 2 \times 10^{-5} M_{sun}/yr$ $v_{\infty} = 3200 \text{ km/s}$

Ηα

Fig. 13. Observed H α profile (solid) compared with the calculation assuming a mass loss of $18 \times 10^{-6} M_{\odot}$ /yr (dashed). Note that the blue narrow emission peak originates from the H II-region emission.

HD 93129A

Mg XII Lyman-alpha

R_o = onset radius of X-ray emission

T* from five emission lines

HD 93129A

T* from Chandra CCD spectrum

Lower mass-loss rate: consistent with $H\alpha$?

Lower mass-loss rate: consistent with $H\alpha$?

Yes! With clumping factor of $f_{cl} = 12$

 $\dot{M} = 7 \times 10^{-6} M_{sun}/yr$

Extension of X-ray profile mass-loss rate diagnostic to other stars lower mass-loss rates than theory predicts

with clumping factors typically of $f_{cl} \sim 20$

Conclusions

Shocked wind plasma distributed throughout wind, above $R_{\rm o} \sim 1.5~R$

O supergiant mass-loss rates: a few lower than theoretical predictions

Consistent with H α , IR/radio if $f_{cl} \sim 15 - 25$

 ζ Oph mass-loss rate 100X lower than theory

Quite a few O + O binaries without obvious CWB X-ray emission have profiles that differ from effectively single O stars